Home About us Contact | |||
Different Fish (different + fish)
Terms modified by Different Fish Selected AbstractsFish venom: pharmacological features and biological significanceFISH AND FISHERIES, Issue 2 2009Gisha Sivan Abstract Nearly 1200 species of marine fish are venomous and they account for two-third of the population of venomous vertebrates. Fish venoms are focused as a potential source of pharmacological agents and physiological tools that have evolved to target vital processes in the human body that appear to have more electivity than many drugs. Fish venoms possess cardiovascular, neuromuscular, oedematic and cytolytic activity. Lethal toxins have been isolated and purified, with some having LD50 values comparable to that of snake venoms. Cardiovascular activity seems to be the dominant effect of fish venoms in experimental models. Piscine venom acts both pre- and post-junctionally to produce depolarization of cell membranes. Studies on cytolytic activity of fish venom found that it produces lysis by forming hydrophilic pores in cell membranes which then result in cell lysis. Almost all fish venoms with neuromuscular activity also possesses cytolytic activity, and it is very likely that the two activities are related. Fish venom is known to induce intense and sustained edematogenic response. As piscine venoms have evolved for the same purpose, they show a number of similarities pharmacologically and it seems likely that most of the biological activities of any given toxin can be traced back to its cytolytic activity. A variety of toxins have been isolated from piscine venom. Although there is a complex balance between the components present in the venom of different fish, all of them seem to share similar activity , functionally and pharmacologically as well as structurally. [source] Introduction of a new physiological acoustic electromyogram transmitterFISHERIES MANAGEMENT & ECOLOGY, Issue 5-6 2008G. LEMBO Abstract, Electromyogram (EMG) radio transmitters have proven to be a useful tool to monitor activity levels in free swimming fish. Unfortunately, the availability of the EMG transmitter in only radio mode limited its use to the freshwater environment. Applications in the marine environment are numerous and include monitoring activity levels in both wild and cultured finfish. This study presents preliminary data from trials examining activity levels in free swimming sea bass, Dicentrarchus labrax, L., using an acoustic EMG transmitter. Three adult sea bass were surgically implanted with the newly created prototype EMG transmitters. Signals from the transmitter were calibrated to swimming speed using a Bla,ka-style chamber. Swimming trials showed a high correlation between EMG signal and swimming velocity (r2 = 0.978) and were described using a sigmoid model. No significant differences (P < 0.05) were found among the four swimming trials conducted on the same fish or among the trials of the three different fish, indicating minimum variation from the prototypes tested. [source] Quality Attributes and Microbial Storage Stability of Caviar from Cultivated White Sturgeon (Acipenser transmontanus)JOURNAL OF FOOD SCIENCE, Issue 1 2010Joong-Han Shin ABSTRACT:, Caviar was prepared from white sturgeon (Acipenser transmontanus) roe by adjusting the water phase salt (WPS) to 4.0% to 6.3% by adding food grade NaCl. Fish were obtained from 2 different farms from the Inland Northwest (N,= 5). Salt was absorbed at a different rate and to a different extent by roe from different fish. The lipid content in the fish roe varied from 10.2% to 14.4% (w/w), with palmitic acid and oleic acid being the most abundant saturated and monounsaturated fatty acids present, respectively. The caviar contained high levels of polyunsaturated fatty acids (PUFA) (35% to 37%) with docosahexanoic acid being the most abundant ,-3 long chain fatty acid. There were no significant differences in microbial storage stability for caviars from different fish stored at 3 °C. However, for caviar stored at 7 °C, there was less growth of,Listeria monocytogenes,(using a cocktail of ATCC 19114, 7644, 19113 strains) in 2 samples (2B46 and 0F05) until day 20. In 2 other samples (453F and 2519), which had lower initial microbial loads, less overall microbial growth was observed, indicating that culture and harvest practices result in compositional differences between fish, which may impact both product composition and storage stability. [source] Integrating physiology and life history to improve fisheries management and conservationFISH AND FISHERIES, Issue 4 2006Jeffery L. Young Abstract Knowledge of life-history traits is increasingly recognized as an important criterion for effective management and conservation. Understanding the link between physiology and life history is an important component of this knowledge and in our view is particularly relevant to understanding marine and freshwater fishes. Such linkages (i.e. the life-history/physiology nexus) have been recently advocated for avian systems and here we explore this concept for fish. This paper highlights the gap in fisheries literature with regard to understanding the relationship between physiology and life history, and proposes ways in which this integration could improve fisheries management and conservation. We use three case studies on different fishes (i.e. the Pacific salmon, the grouper complex and tuna) to explore these issues. The physiological structure and function of fish plays a central role in determining stock response to exploitation and changes in the environment. Physiological measures can provide simple indicators necessary for cost-effective monitoring in the evaluation of fisheries sustainability. The declining state of world fisheries and the need to develop and implement restoration strategies, such as hatchery production or protected areas, provides strong incentive to better understand the influence of physiology on population and reproductive dynamics and early life history. Physiology influences key population-level processes, particularly those dealing with reproduction, which must be incorporated into the design and successful implementation of specific and broadscale initiatives (e.g. aquatic protected areas and bycatch reduction). Suggestions are made for how to encourage wider application of the physiology/life-history link, in fisheries management and conservation, as well as more broadly in education and research. [source] |