Different Disease Entities (different + disease_entity)

Distribution by Scientific Domains


Selected Abstracts


Clinical Value of the Tissue Doppler S Wave to Characterize Left Ventricular Hypertrophy as Defined by Echocardiography

ECHOCARDIOGRAPHY, Issue 4 2010
Demian Chejtman M.D.
Left ventricular hypertrophy (LVH) may be a physiological finding and may also be associated with different disease entities and hence, with different outcomes. Regional myocardial function can be assessed with color Doppler tissue imaging, specifically by the waveform of the isovolumic contraction (IC) period and the regional systolic wave ("s"). Methods and Results: We studied five groups (G): healthy, sedentary young volunteers (G1, n:10); healthy sedentary adult volunteers (G2, n:8); and subjects with LVH (left ventricular mass index >125 g/m2) including: high performance athletes (G3, n:21), subjects with hypertension (G4, n:21), subjects with hypertrophic cardiomyopathy (HCM) (G5, n:18). We measured peak "s" wave velocity (cm/sec) at the basal and mid septum, the IC/s ratio, and basal to mid-septal velocity difference (BMVD) of the "s" wave. Regional "s" wave values (cm/sec) were G1 = 5.6 ± 1; G2 = 5.4 ± 0.8; G3 = 5.7 ± 0.6; G4 = 5.3 ± 1.1; G5 = 4.2 ± 1.1 (P < 0.0001). The IC/s ratio was G1 = 0.28 ± 0.18; G2 = 0.39 ± 0.21; G3 = 0.23 ± 0.10; G4 = 0.42 ± 0.15; G5 = 0.64 ± 0.15 (P < 0.0001). The BMVD (cm/sec) was G1 = 2 ± 0.51; G2 = 1.71 ± 0.29; G3 = 1.78 ± 0.44; G4 = 1.26 ± 0.96; G5 = 0.45 ± 0.4 (P < 0.0001). IC/s < 0.38 discriminated physiological from pathological forms of hypertrophy (sensitivity 90%; specificity 88%). Peak "s" wave velocity discriminated HCM from other causes of hypertrophy, with a cutoff value of 4.46 cm/sec (sensitivity 72%; specificity 90%). BMVD <0.98 cm/sec detected HCM with 89% sensitivity and 86% specificity. Conclusions: Peak "s" wave velocity and two indices: IC/s and BMDV are novel parameters that may allow to discriminate physiological from pathological forms of hypertrophy as well as different subtypes of hypertrophy. (ECHOCARDIOGRAPHY 2010;27:370-377) [source]


Upregulation of TNF Receptor Type 2 in Human and Experimental Renal Allograft Rejection

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 4 2009
U. Hoffmann
An important role of TNF interacting with TNFR2 has been shown in different models of ischemic, nephrotoxic and immune-mediated renal injury. To systematically evaluate the expression of TNFR2 in renal allograft rejection, we investigated human renal allograft biopsies and, in addition, established an experimental transplantation model in rats to verify the human data under standardized conditions. The expression of TNFR2 was analyzed in 96 human renal allograft biopsies with different disease entities. In a 6-day and a 28-day experimental protocol, TNFR2 was examined in kidney specimens and in the urine of control, uni-nephrectomized and transplanted rats ± cyclosporine treatment (n = 114). In human biopsies and in rat allografts on day 6 with acute allograft rejection, significantly elevated expression of TNFR2 was observed in tubular epithelial cells, podocytes, B cells and monocytes/macrophages. The expression level was associated with renal function. The TNFR2 expression level at day 28 was significantly lower compared to day 6. TNFR2 is markedly upregulated both in human and experimental acute renal allograft rejection. Our data are robust and consistent between different species, suggesting a role for TNFR2 in the early course of rejection. [source]


Occurrence of dysregulated oncogenes in primary plasma cells representing consecutive stages of myeloma pathogenesis: indications for different disease entities

BRITISH JOURNAL OF HAEMATOLOGY, Issue 2 2003
Thomas Rasmussen
Summary. This study investigated the expression pattern in primary plasma cells (PCs) of putative oncogenes suggested to be involved in multiple myeloma (MM) development. cDNA archives were generated by global reverse transcription polymerase chain reaction from CD38++/CD19,/CD56,/++ aberrant PCs of a prospective cohort of 96 subjects, including healthy individuals, patients with monoclonal gammopathies of undetermined significance (MGUS), MM and MM with extramedullary manifestations (ExMM). The cDNA archives were analysed quantitatively for expression of the cyclin D1, fibroblast growth factor receptor 3 (FGFR3), C-MYC, C-MAF and cyclin D3 oncogenes. In addition, all patients were screened for IGH,MMSET hybrid transcripts. None of the analysed oncogenes was randomly distributed. C-MYC and cyclin D3 expression increased at the extramedullary transformation stage. Furthermore, C-MYC and cyclin D3 expression in CD56+ MM was similar to MGUS, whereas CD56, MM was similar to ExMM. FGFR3/IGH,MMSET was only observed among CD56+ MM patients, whereas an increased frequency of C-MAF dysregulation was seen among CD56, MM. High cyclin D1 expression levels were identified at similar frequencies at all stages, whereas the frequency of patients with low cyclin D1 levels increased during MM development. These data support the stepwise transformation model accumulating genetic alterations and proliferative capacity during MM initiation and development resulting in different clinical entities. [source]


Clinical aspects of neuromuscular transmission disorders

ACTA NEUROLOGICA SCANDINAVICA, Issue 2006
Amelia Evoli
Autoimmune disorders of neuromuscular transmission are caused by antibodies (abs) directed against membrane proteins at the motor end-plate. Myasthenia gravis (MG) is due, in most cases, to abs against the nicotinic acetylcholine receptor (AChR). Anti-AChR-positive MG actually includes different disease entities: weakness can be confined to extrinsic ocular muscles or can be generalized; patients with generalized MG (G-MG) can be subdivided on the basis of age of onset, HLA association and thymic pathology. About 15% of G-MG patients are anti-AChR-negative; in a proportion of these cases serum abs against the muscle- specific kinase (MuSK) are found. Anti-MuSK-positive MG is characterized by predominant involvement of bulbar muscles and very low frequency of thymic pathology. The Lambert-Eaton myasthenic syndrome (LEMS) is caused by abs against voltage-gated calcium channels at nerve terminal. LEMS is characterized by muscle weakness and autonomic disturbances and it is paraneoplastic in over 50% of the cases. In neuromyotonia and cramp-fasciculation syndrome, that are thought to be due to anti-voltage-gated potassium channel abs, signs of peripheral nerve hyperexcitability can be associated with CNS features. [source]