Home About us Contact | |||
Different Cell Lineages (different + cell_lineage)
Selected AbstractsThe delicate balance between male and female sex determining pathways: potential for disruption of early steps in sexual developmentINTERNATIONAL JOURNAL OF ANDROLOGY, Issue 2 2010P. Koopman Summary Testes and ovaries develop from the same primordial structures, the genital ridges, in the mammalian foetus. Male development depends critically on the correct functioning of the Y-linked testis-determining gene, Sry. However, Sry is highly vulnerable to mutation, and so does not provide a very robust sex-determining mechanism. Both in testes and in ovaries, proper gonadal development involves co-ordinated regulation of the bipotential fates of a number of different cell lineages, and is dependent on intercellular signalling mechanisms. If either the testicular or ovarian pathway stalls in the early stages, mechanisms operate to engage the alternative pathway. For these reasons, the early steps in mammalian sexual development are vulnerable to genetic and environmental perturbation, and represent possible points of action of endocrine disrupting compounds. [source] Ontogeny of Plurihormonal Cells in the Anterior Pituitary of the Mouse, as Studied by Means of Hormone mRNA Detection in Single CellsJOURNAL OF NEUROENDOCRINOLOGY, Issue 8 2002E. Seuntjens Abstract The expression of mRNA of growth hormone (GH), prolactin (PRL), pro-opiomelanocortin (POMC) and the common glycoprotein hormone ,-subunit (,GSU) was studied by means of single cell reverse transcriptase-polymerase chain reaction in male mouse pituitary cells at key time points of fetal and postnatal development: embryonic day 16 (E16); postnatal day 1 (P1) and young-adult age (P38). At E16, the hormone mRNAs examined were detectable, although only in 44% of total cells. Most of the hormone-positive cells expressed only one of the tested hormone mRNAs (monohormonal) but 14% of them contained more than one hormone mRNA (plurihormonal cells). Combinations of GH mRNA with PRL mRNA, of ,GSU mRNA with GH and/or PRL mRNA and of POMC mRNA with GH and/or PRL mRNA or ,GSU mRNA were found. As expected, the proportion of hormone-positive cells rose as the mouse aged. The proportions of plurihormonal cells followed a developmental pattern independent of that of monohormonal cells and characteristic for each hormone mRNA examined. Cells coexpressing POMC mRNA with GH or PRL mRNA significantly rose in proportion between E16 and P1, while the proportion of cells coexpressing GH and PRL mRNA markedly increased between P1 and P38. The occurrence of cells displaying combined expression of ,GSU mRNA with GH and/or PRL mRNA did not significantly change during development. Remarkably, the population of cells expressing PRL mRNA only, was larger at E16 than at P1 and expanded again thereafter. In conclusion, the normal mouse pituitary develops a cell population that is capable of expressing multiple hormone mRNAs, thereby combining typical phenotypes of different cell lineages. These plurihormonal cells are already present during embryonic life. This population is of potential physiological relevance because development-related factors appear to determine which hormone mRNAs are preferentially coexpressed. Coexpression of multiple hormone mRNAs may represent a mechanism to respond to temporally increased endocrine demands. The data also suggest that the control of combined hormone expression is different from that of single hormone expression, raising questions about the current view on pituitary cell lineage specifications. [source] Homozygous Defects In Lmna, Encoding Lamin A/C Nuclear-Envelope Proteins, Cause Autosomal Recessive Axonal Neuropathy In Human (Charcot-Marie-Tooth Disorder Type 2) And MouseJOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 3 2002A De Sandre-Giovannoli The Charcot-Marie-Tooth (CMT) disorders comprise a group of clinically and genetically heterogeneous hereditary motor and sensory neuropathies, which are mainly characterized by muscle weakness and wasting, foot deformities, and electrophysiological, as well as histological, changes. A subtype, CMT2, is defined by a slight or absent reduction of nerve-conduction velocities together with the loss of large myelinated fibers and axonal degeneration. CMT2 phenotypes are also characterized by a large genetic heterogeneity, although only two genes-NF-L and KIF1Bbeta-have been identified to date. Homozygosity mapping in inbred Algerian families with autosomal recessive CMT2 (AR-CMT2) provided evidence of linkage to chromosome 1q21.2-q21.3 in two families (Z(max) = 4.14). All patients shared a common homozygous ancestral haplotype that was suggestive of a founder mutation as the cause of the phenotype. A unique homozygous mutation in LMNA (which encodes lamin A/C, a component of the nuclear envelope) was identified in all affected members and in additional patients with CMT2 from a third, unrelated family. Ultrastructural explor- ation of sciatic nerves of LMNA null (i.e., ,/,) mice was performed and revealed a strong reduction of axon density, axonal enlargement, and the presence of nonmyelinated axons, all of which were highly similar to the phenotypes of human peripheral axonopathies. The finding of site-specific amino acid substitutions in limb-girdle muscular dystrophy type 1B, autosomal dominant Emery-Dreifuss muscular dystrophy, dilated cardiomyopathy type 1A, autosomal dominant partial lipodystrophy, and, now, AR-CMT2 suggests the existence of distinct functional domains in lamin A/C that are essential for the maintenance and integrity of different cell lineages. To our knowledge, this report constitutes the first evidence of the recessive inheritance of a mutation that causes CMT2; additionally, we suggest that mutations in LMNA may also be the cause of the genetically overlapping disorder CMT2B1. [source] Engineering of Vascular Grafts With Genetically Modified Bone Marrow Mesenchymal Stem Cells on Poly (Propylene Carbonate) GraftARTIFICIAL ORGANS, Issue 12 2006Jun Zhang Abstract:, Bone marrow mesenchymal stem cells (MSCs) have demonstrated their pluripotency to differentiate into different cell lineages and may be an alternative cell source for vascular tissue engineering. The objective of this study is to create small diameter vessels by seeding and culture of genetically modified MSCs onto a synthetic polymer scaffold produced by an electrospinning technique. A tubular scaffold (2 mm in diameter) with a microstructure of nonwoven fibers was produced by electrospinning of poly (propylene carbonate) (PPC). Rat MSCs obtained from bone marrow were expanded in culture and modified with vasculoprotective gene endothelial nitric oxide synthase (eNOS) or marker gene green fluorescent protein (GFP). These MSCs were seeded onto the electrospun fibrous grafts (internal diameter = 2 mm), and cultured in 5% CO2 at 37°C. The growth of MSCs in the scaffold was analyzed with scanning electron microscopy (SEM) and hematoxylin and eosin (H&E) staining. The gene transfer and transgenic gene expression were examined with fluorescence-activated cell sorting (FACS), immunochemical staining, reverse transcriptase-polymerase chain reaction (RT-PCR), and western blot. The production of nitric oxide (NO) by the engineered vessels was measured with an NO detection kit. Our data showed that the seeded cells integrated with the microfibers of the scaffold to form a three-dimensional cellular network, indicating a favorable interaction between this synthetic PPC scaffold with MSCs. High transduction efficiency was obtained with the use of concentrated retrovirus in the gene transfection of MSCs. The eNOS gene transcripts and protein were detected in the grafts seeded with eNOS-modified MSCs by RT-PCR and immunochemical staining. The amount of NO produced by grafts seeded with eNOS-modified MSCs was comparable to that produced by native blood vessels, and it was significantly higher than that in the grafts seeded with nonmodified MSCs. In summary, the vascular graft produced by culture of eNOS gene-modified MSCs onto the electrospun tubular scaffolds shows promising results in terms of function. The use of MSCs and therapeutic genes in tissue engineering of blood vessels could be helpful in improving vessel regeneration and patency. [source] Proliferation and pluripotency potential of ectomesenchymal cells derived from first branchial archCELL PROLIFERATION, Issue 2 2006Yunfeng Lin Their potential to be expanded in culture as a monolayer and to be induced into different cell lineages in vitro has not been previously reported in detail. In this study, the ectomesenchymal cells in the first branchial arch were enzymatically isolated from the mandibular processes of BALB/c mice and were maintained in an intact state in a medium containing leukaemia inhibitory factor. Here, we first evaluated the proliferative activity of the cells after the third passage, using bromodeoxyuridine labelling and in situ hybridization of telomerase mRNA. Positive staining for expression of HNK-1, S-100 and vimentin confirmed that the population of stem cells originated from the ectomesenchyme, which did not express cytokeratin. Then we investigated the molecular and cellular characteristics of the ectomesenchymal cells during their differentiation towards neurogenic, endothelial, myogenic and odontogenic lineages. Expression of multiple lineage-specific genes and proteins was detected by utilizing a range of molecular and biochemical approaches when the cells were transferred to inductive medium. Histological and immunohistochemical analysis of the induced cells at various intervals indicated obvious phenotypic alteration and presence of specific proteins for the differentiated lineages, for example nestin, factor VIII, ,-SMA and dentin sialophosphoprotein (DSPP), respectively. Correlatively, results of reverse transcription,PCR corroborated at mRNA level the expression of the characteristic molecules during differentiation. Therefore, it is suggested that the ectomesenchymal cells derived from the first branchial arch may represent a novel source of multipotential stem cells capable of undergoing expansion and variant differentiation in vitro. [source] |