Different Amino Acids (different + amino_acids)

Distribution by Scientific Domains


Selected Abstracts


Relationships between the ethanol utilization (alc) pathway and unrelated catabolic pathways in Aspergillus nidulans

FEBS JOURNAL, Issue 17 2003
Michel Flipphi
The ethanol utilization pathway in Aspergillus nidulans is a model system, which has been thoroughly elucidated at the biochemical, genetic and molecular levels. Three main elements are involved: (a) high level expression of the positively autoregulated activator AlcR; (b) the strong promoters of the structural genes for alcohol dehydrogenase (alcA) and aldehyde dehydrogenase (aldA); and (c) powerful activation of AlcR by the physiological inducer, acetaldehyde, produced from growth substrates such as ethanol and l -threonine. We have previously characterized the chemical features of direct inducers of the alc regulon. These studies allowed us to predict which type of carbonyl compounds might induce the system. In this study we have determined that catabolism of different amino acids, such as l -valine, l -isoleucine, l -arginine and l -proline, produces aldehydes that are either not accumulated or fail to induce the alc system. On the other hand, catabolism of d -galacturonic acid and putrescine, during which aldehydes are transiently accumulated, gives rise to induction of the alc genes. We show that the formation of a direct inducer from carboxylic esters does not depend on alcA -encoded alcohol dehydrogenase I or on AlcR, and suggest that a cytochrome P450 might be responsible for the initial formation of a physiological aldehyde inducer. [source]


Amino acid concentrations in blood serum of horses performing long lasting low-intensity exercise

JOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 3-6 2005
D. Bergero
Summary The aim of this work was to evaluate the changes in the concentrations, after two rides different for distance covered, of different amino acids in endurance horses. Blood samples have been collected from horses just before the start, at the top of a steep slope (819 m difference in height) and just at the end of a 32-km endurance ride. A second group, competing in a 72 km endurance ride, has also been sampled immediately before and after the race. In serum samples, the concentrations of alanine, arginine, asparagine, glycine, isoleucine, histidine, leucine, lysine, methionine, ornithine, phenylalanine, tryptophan, tyrosine and valine have been measured by high-performance liquid chromatography (HPLC). anova and t -test have been used to study the differences in the concentrations of the amino acids. The pre-ride concentrations of the free amino acids were different between the two races, except for methionine and leucine. Differences between start and end race have been found for both groups for all the considered parameters except asparagine, isoleucine, leucine and lysine for the 72 km ride. Increases have been recorded for the shorter and decreases for the longer ride in the blood serum concentrations. Significant increases have also been found between the starting sampling and the second, at the top of the slope, only for alanine, arginine, asparagines, phenylalanine and lysine. The ride length has a significant impact on blood serum amino acids mobilization and uptake; in the shorter race the increases stand only for mobilization, whereas in the longer the decrease can be considered the effect of the onset of the amino acids catabolism. [source]


Ultrastructural and histochemical study on gills and skin of the Senegal sole, Solea senegalensis

JOURNAL OF APPLIED ICHTHYOLOGY, Issue 6 2004
J. M. Arellano
Summary This study was undertaken to identify the normal ultrastructural features of gills and skin of the Senegal sole, Solea senegalensis, for a comparative measure to morphological alterations caused by environmental stressors such as reduced water quality and diseases. In the Senegal sole skin, four morphologically distinct layers were identified: cuticle, epidermis, dermis and hypodermis. The epidermis was composed of stratified epithelium containing three cellular layers: the outermost or mucosa layer, the middle or fusiform layer and the stratum germinativum or the basal layer. In the mucosa, two mucous cell types were differentiated: type A cells containing several round vesicles of different electron density and type B cells containing mucosomes of uniform electron density. Senegal sole have five pairs of gill arches, each containing two rows of well-developed and compactly organized primary filaments and secondary lamellae. Fingerprint-like microridges were observed on the surface of epithelial cells. The branchial lamellae epithelium consisted of different cell types: pavement, mucous and chloride. Between the chloride cells and the larger pavement cells, accessory cells were observed. Complexes of tight junctions and desmosomes were frequently observed between adjacent chloride and epithelial cells. Neutral mucosubstances and/or glycoconjugates were observed in the epidermis, dermis and hypodermis of S. senegalensis skin. Proteins rich in different amino acids, such as arginine and cysteine, reacted negatively or weakly positive in the epidermis, dermis and hypodermis. In gills, some mucous cells responded weakly positive to periodic acid-Schiff (PAS) reaction but were strongly stained with Alcian Blue at pH 0.5, 1 and 2.5. When Alcian Blue pH 2.5,PAS reaction was performed, most mucous cells were stained blue (carboxylated mucins) and some mucocytes stained purple, indicating a combination of neutral and acid mucins. Proteins rich in cysteine-bound sulphydryl (-SH-) and cystine disulphide (-S-S-) groups were strongly detected in branchial and epidermal mucous cells, whereas lysine, tyrosine and arginine containing proteins showed very weak staining in both epidermal and branchial mucous cells. Protein reactions were strongly positive in the pillar cells, except for those rich in tryptophan, whereas the branchial cartilaginous tissue did not show an important reaction. The performed lipid reactions were negative in goblet and chloride cells. It is concluded from this study that ultrastructural and cytohistochemical features of the Senegal sole skin and gills may serve as control structures in both natural and aquaculture systems to monitor or detect environmental stress responses at the histological level. [source]


Improving the interaction of Myc-interfering peptides with Myc using molecular dynamics simulations

JOURNAL OF PEPTIDE SCIENCE, Issue 1 2009
Eva M. Jouaux
Abstract Previously, a Myc-interfering peptide (Mip) was identified for the targeted inactivation of the Myc:Max complex by the combination of rational design and an in vivo protein-fragment complementation assay. In the subsequent work presented here, molecular dynamics simulations and free energy calculations based on the molecular mechanics GBSA method were performed to define the contribution of the different amino acids in the Myc:Mip coiled coil domain, and compared to wild-type Myc:Max. For further optimization of the Myc interference, point mutations were introduced into Mip and analyzed, from which two showed much higher binding affinities in the computational studies in good agreement with the experiment. These mutants with very high potential for inactivation of Myc can now be used as starting point for further optimizations based on the computational as well as experimental protocols presented here. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd. [source]


Synthesis and characterization of metal binding pseudotripeptides

JOURNAL OF PEPTIDE SCIENCE, Issue 8 2003
Sebastian Kuenzel
Abstract Metal complexes with peptide or pseudopeptide type ligands can serve as good model compounds for a deeper understanding of enzymatic catalysis, but ligands with a high selectivity for different transition metal cations are hard to find due to the rather flexible nature of peptides. Since such ligands would be the sine qua non condition for the synthesis of heterodinuclear peptide metal complexes with catalytic activity, the search for small, affine and selective metal chelating sequences is of interest. Using four different amino acids (His, Lys, Asp, Glu) a set of 16 pseudotripeptides of the common structure Bz-AS1 -Sar-AS2 -NH2 has been synthesized, purified and characterized by mass spectrometry and 1H-NMR. Their ability to form metal complexes has been investigated leading to short motifs capable of selectively binding only one or two transition metal cations with high affinity. As expected, the complexation of transition metal cations by pseudotripeptides is strongly dependent not only on the amino acid composition, but also on the sequence with regard to the stability of the resulting complexes, as well as the selectivity of the ligands towards Cu2+, Co2+, Ni2+, Zn2+ and Mn2+. Copyright © 2003 European Peptide Society and John Wiley & Sons, Ltd. [source]


Effects of Acamprosate on Excitatory Amino Acids During Multiple Ethanol Withdrawal Periods

ALCOHOLISM, Issue 3 2003
Abdelkader Dahchour
Background: Our previous studies on the effects of acamprosate on enhanced locomotion during repeated withdrawals are now extended to the effects of acamprosate on excitatory amino acids in the hippocampus during repeated ethanol withdrawals. Methods: In this study, Wistar rats were made ethanol dependent by 4 weeks of vapor inhalation. After this first cycle of chronic ethanol treatment, rats underwent repeated and alternate cycles of 24 hr withdrawals and 1 week of chronic ethanol treatment. The microdialysis technique was used together with high-performance liquid chromatography and electrochemical detection to quantify different amino acids such as aspartate and glutamate. Results: An intraperitoneal administration of acamprosate (400 mg/kg) to naïve rats did not alter aspartate or glutamate levels compared with the saline groups. During the first cycle of ethanol withdrawal, the administration of acamprosate (400 mg/kg, intraperitoneally) 2 hr after the commencement of ethanol withdrawal decreased both aspartate and glutamate microdialysate levels when compared with their respective saline group. Acamprosate administration also significantly decreased glutamate levels during the third withdrawal compared with the saline group, whereas no changes were seen in aspartate levels. Conclusion: The results of this work demonstrate that acamprosate reduced the excitatory amino acid glutamate increase observed during repeated ethanol withdrawal. These effects of acamprosate may provide a protective mechanism against neurotoxicity by reducing excitatory amino acids, particularly glutamate. [source]


Effects of mutation at the D-JH junction on affinity, specificity, and idiotypy of anti-progesterone antibody DB3

PROTEIN SCIENCE, Issue 9 2006
Mingyue He
Abstract The crystal structures of the Fab, fragment of the anti-progesterone monoclonal antibody DB3 and its complexes with steroid haptens have shown that the D-JH junctional residue TrpH100 is a key contributor to binding site interactions with ligands. The indole group of TrpH100 also undergoes a significant conformational change between the bound and unliganded states, effectively opening and closing the combining site pocket. In order to explore the effect of substitutions at this position on steroid recognition, we have carried out mutagenesis on a construct encoding a three-domain single-chain fragment (VH/K) of DB3 expressed in Escherichia coli. TrpH100 was replaced by 13 different amino acids or deleted, and the functional and antigenic properties of the mutated fragments were analyzed. Most substitutions, including small, hydrophobic, hydrophilic, neutral, and negatively charged side chains, were reduced or abolished binding to free progesterone, although binding to progesterone-BSA was partially retained. The reduction in antigen binding was paralleled by alteration of the idiotype associated with the DB3 combining site. In contrast, the replacement of TrpH100 by Arg produced a mutant that retained wild-type antibody affinity and idiotype, but with altered specificity. Significant changes in this mutant included increased relative affinities of 104 -fold for progesterone-3-carboxymethyloxime and 10-fold for aetiocholanolone. Our results demonstrate an essential role for the junctional residue H100 in determining steroid-binding specificity and combining site idiotype and show that these properties can be changed by a single amino acid substitution at this position. [source]


Mutagenic analysis of the nucleation propensity of oxidized Alzheimer's ,-amyloid peptide

PROTEIN SCIENCE, Issue 8 2005
Tony Christopeit
Abstract The formation of polypeptide aggregates represents a nucleated polymerization reaction in which an initial nucleation event (lag phase) is followed by the extension of newly formed nuclei into larger aggregates, including fibrils (growth phase). The efficiencies of these reactions relate to the lag time (lag phase) and to the rate of aggregation (growth phase), which can be determined from experimental aggregation curves. Here we present a mutagenic analysis in which we replace valine 18 of the Alzheimer's A, (1,40) peptide with 17 different amino acids and determine its effect on the lag time, and therefore, on the propensity of nucleation. Comparison with various physico-chemical properties shows that nucleation is affected in a predictable manner depending on the ,-sheet propensity and hydrophobicity of residue 18. In addition, we observe a direct proportionality between the lag time and the rate of aggregation. These data imply that the two reactions, nucleation and polymerization, are governed by very similar physicochemical principles and that they involve the formation of the same types of noncovalent interactions. [source]