Diffusion Measurements (diffusion + measurement)

Distribution by Scientific Domains
Distribution within Chemistry

Kinds of Diffusion Measurements

  • nmr diffusion measurement


  • Selected Abstracts


    Exciton Diffusion Measurements in Poly(3-hexylthiophene),

    ADVANCED MATERIALS, Issue 18 2008
    Paul E. Shaw
    The problem of making reliable measurements of exciton diffusion lengths in organic semiconductors is addressed. The exciton diffusion length is an extremely important quantity in the operation of organic solar cells. We focus on the polymer P3HT because of its widespread use in solar cells and are able to fit the exciton diffusion in a range of films with a single diffusion constant, showing that our approach is particularly robust. [source]


    The Stereostructure of Porphyra-334: An Experimental and Calculational NMR Investigation.

    HELVETICA CHIMICA ACTA, Issue 3 2007
    Evidence for an Efficient, Proton Sponge'
    Abstract The mycosporine-like amino acid (MAA) porphyra-334 (1) is subjected to extensive 1H- and 13C-NMR analysis as well as to density-functional-theory (DFT) calculations. All 1H- and 13C-NMR signals of 1 are assigned, as well as the resonances of prochiral proton pairs. This is achieved by 500-MHz standard COSY, HMQC, and HMBC experiments, as well as by one-dimensional (DPFGSE-NOE) and two-dimensional (NOESY) NOE experiments. Diffusion measurements (DOSY) confirm that 1 is monomeric in D2O solution. DFT Calculations yield 13C-NMR chemical shifts which are in good agreement for species 6 which is the imino N-protonated form of 1. An exceptionally high proton affinity of 265.7,kcal/mol is calculated for 1, indicating that 1 may behave as a very powerful ,proton sponge' of comparable strength as synthetic systems studied so far. Predictions of 13C-NMR chemical shifts by the ,NMRPredict' software are in agreement with the DFT data. The absolute configuration at the ring stereogenic center of 1 is concluded to be (S) from NOE data as well as from similarities with the absolute configuration (S) found in mycosporine-glycine 16. This supports the assumption that 1 is biochemically derived from 3,3- O -didehydroquinic acid (17). The data obtained question the results recently published by a different research group claiming that the configuration at the imino moiety of 1 is (Z), rather than (E) as established by the here presented study. [source]


    Diffusion measurements and diffusion tensor imaging with noisy magnitude data

    JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 1 2009
    Anders Kristoffersen
    Abstract Purpose To compare an unbiased method for estimation of the diffusion coefficient to the quick, but biased, log-linear (LL) method in the presence of noisy magnitude data. Materials and Methods The magnitude operation changes the signal distribution in magnetic resonance (MR) images from Gaussian to Rician. If not properly taken into account, this will introduce a bias in the estimated diffusion coefficient. We compare two methods by means of Monte Carlo simulations. The first one applies least-squares fitting of the measured signal to the median (MD) value of the probability density function. The second method is uncorrected LL estimation. We also perform a high-resolution diffusion tensor experiment. Results The uncorrected LL estimator is heavily biased at low signal-to-noise ratios. The bias has a significant effect on image quality. The MD estimator is accurate and produces images with excellent contrast. Conclusion In the presence of noisy magnitude data, unbiased estimation is essential in diffusion measurements and diffusion tensor imaging. J. Magn. Reson. Imaging 2009;29:237,241. © 2008 Wiley-Liss, Inc. [source]


    Diffusion measurements free of motion artifacts using intermolecular dipole-dipole interactions

    MAGNETIC RESONANCE IN MEDICINE, Issue 1 2004
    Scott D. Kennedy
    Abstract Diffusion encoding, or diffusion weighting, is commonly achieved by applying a pair of balanced pulsed-field gradients during spin evolution. An alternative way to obtain diffusion measurements is to select dipolar correlation distances using the distant dipolar field (DDF) in systems with abundant spin density, such as water in tissues. Diffusion weighting using this effect is unique in that the refocusing "gradient" is carried within the sample, and thus the macroscopic motion of the sample is not expected to interfere with signal formation. The experiments presented here demonstrate that in moving phantoms, the phase shift of the signal due to linear motion is minimal in diffusion-weighted (DW) DDF measurements, and that motion artifacts in images of moving phantoms and the abdomen of live mice are small compared to standard pulsed-field-gradient methods. The technique may facilitate the use of DWI in typically motion-prone regions such as the abdomen, lungs, and heart. Magn Reson Med 52:1,6, 2004. © 2004 Wiley-Liss, Inc. [source]


    Hexamer oligonucleotide topology and assembly under solution phase NMR and theoretical modeling scrutiny

    BIOPOLYMERS, Issue 12 2010
    Maxim P. Evstigneev
    Abstract The entire family of noncomplementary hexamer oligodeoxyribonucleotides d(GCXYGC) (X and Y = A, G, C, or T) were assessed for topological indicators and equilibrium thermodynamics using a priori molecular modeling and solution phase NMR spectroscopy. Feasible modeled hairpin structures formed a basis from which solution structure and equilibria for each oligonucleotide were considered. 1H and 31P variable temperature-dependent (VT) and concentration-dependent NMR data, NMR signal assignments, and diffusion parameters led to d(GCGAGC) and d(GCGGGC) being understood as exceptions within the family in terms of self-association and topological character. A mean diffusion coefficient D298 K = (2.0 ± 0.07) × 10,10 m2 s,1 was evaluated across all hexamers except for d(GCGAGC) (D298 K = 1.7 × 10,10 m2 s,1) and d(GCGGGC) (D298 K = 1.2 × 10,10 m2 s,1). Melting under VT analysis (Tm = 323 K) combined with supporting NMR evidence confirmed d(GCGAGC) as the shortest tandem sheared GA mismatched duplex. Diffusion measurements were used to conclude that d(GCGGGC) preferentially exists as the shortest stable quadruplex structure. Thermodynamic analysis of all data led to the assertion that, with the exception of XY = GA and GG, the remaining noncomplementary oligonucleotides adopt equilibria between monomer and duplex, contributed largely by monomer random-coil forms. Contrastingly, d(GCGAGC) showed preference for tandem sheared GA mismatch duplex formation with an association constant K = 3.9 × 105M,1. No direct evidence was acquired for hairpin formation in any instance although its potential existence is considered possible for d(GCGAGC) on the basis of molecular modeling studies. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 1023,1038, 2010. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source]


    Cardiac diffusion MRI without motion effects

    MAGNETIC RESONANCE IN MEDICINE, Issue 1 2002
    Jiangang Dou
    Abstract We present a method for diffusion tensor MRI in the beating heart that is insensitive to cardiac motion and strain. Using a stimulated echo pulse sequence with two electrocardiogram (ECG) triggers, diffusion-encoding bipolar gradient pulses are applied at identical phases in consecutive cardiac cycles. In this experiment, diffusion is encoded at a single phase in the cardiac cycle of less than 30 ms in duration. This encoding produces no phase shifts for periodic motion and is independent of intervening strains. Studies in a gel phantom with cyclic deformation confirm that by using this sequence we can map the diffusion tensor free of effects of cyclic motion. In normal human subjects, myocardial diffusion eigenvalues measured with the present method showed no significant change between acquisitions encoded at maximum contractile velocity (peak) vs. at myocardial standstill (end-systole), demonstrating motion independence of in vivo diffusion measurements. Diffusion tensor images acquired with the present method agree with registered data acquired with a previous cardiac diffusion MRI method that was shown to be valid in the normal heart, strongly supporting the validity of MRI diffusion measurement in the beating heart. Myocardial sheet and fiber dynamics measured during systole showed that normal human myocardial sheet orientations tilt toward the radial during systole, and fiber orientations tilt toward the longitudinal, in qualitative agreement with previous invasive studies in canines. These results demonstrate the technique's ability to measure myocardial diffusion accurately at any point in the cardiac cycle free of measurable motion effect, as if the heart were frozen at the point of acquisition. Magn Reson Med 48:105,114, 2002. © 2002 Wiley-Liss, Inc. [source]


    Insulin transport across porous charged membranes: Effect of the electrostatic interaction

    BIOTECHNOLOGY PROGRESS, Issue 5 2009
    Shaoling Zhang
    Abstract Insulin transport phenomena across a series of porous charged membranes were studied at two pH conditions (pH 3.3 and pH 7.4) in this article. The membranes were prepared by pore-surface modification of porous poly(acrylonitrile) (PAN) membranes by grafting with weak acidic and basic functional groups. The insulin partition coefficient K between the membrane and solution was estimated from the equilibrium adsorption amount in the batch adsorption experiment. The insulin effective diffusion coefficient D inside the membrane was determined as a fitting parameter by matching the diffusion model with the experimental data of the diffusion measurement. Both K and D correlated well with the charge properties of the insulin and membrane: when the insulin and membrane carried opposite net charge, the partition coefficient showed relatively larger values, while the effective diffusion coefficient was reduced. The insulin permeability coefficient P obtained from the experimental results agreed with that estimated from the partition coefficient and effective diffusion coefficient. These results suggested that the combined effects of the solubility and diffusivity on the permeability coefficient complicated the relationship between the permeability and the charge properties of the insulin and membrane. Additionally, our calculation supported that insulin permeability was reduced by the boundary layer between the membrane and solution. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source]


    NMR diffusion measurements under chemical exchange between sites involving a large chemical shift difference

    CONCEPTS IN MAGNETIC RESONANCE, Issue 2 2010
    S. Leclerc
    Abstract This study concerns the thallium-205 cation in aqueous solution in the presence of a calixarene molecule. Although the measurement of the self-diffusion coefficient of pure thallium (without calixarene in the aqueous solution) does not pose any particular problem, major difficulties are encountered with the standard method using gradient strength increment as soon as thallium is partly complexed by calixarene. With static magnetic field gradients, the NMR signal is so weak that it prevents any reliable measurement, whereas radio frequency (rf) field gradients lead to an unrealistic value of the diffusion coefficient. This failure is explained by the fact that thallium is in fast exchange between two sites (complexed and free thallium) thus exhibiting a single NMR signal although, in the course of the experiment, two signals, with an important difference in resonance frequencies (due to the large thallium chemical shift range), are effectively involved. With the objective to understand these quite unexpected observations, the theory underlying NMR diffusion experiments is first reviewed, and criteria of fast exchange are discussed for three parameters: chemical shifts, relaxation rates, and diffusion coefficients. It turns out that off-resonance effects are responsible for unwanted defocusing due to rf pulses in the static magnetic field gradient method and for time-dependent gradients in the rf field gradient method. Concerning the latter, a remedy is proposed which consists in applying the stronger gradient and incrementing the gradient pulse durations. After correction for relaxation, the expected value of the diffusion coefficient is retrieved. © 2010 Wiley Periodicals, Inc. Concepts Magn Reson Part A 36A: 127,137, 2010. [source]


    Diffusion tensor magnetic resonance imaging in spinal cord injury

    CONCEPTS IN MAGNETIC RESONANCE, Issue 3 2008
    Benjamin M. Ellingson
    Abstract Noninvasive assessment of spinal cord integrity following injury is critical for precise diagnosis, prognosis, and surgical intervention strategies. Diffusion weighted imaging and diffusion tensor imaging are more sensitive to the underlying spinal cord microstructure than traditional imaging techniques. As a result, diffusion imaging is emerging as the clinical technique for imaging the spinal cord after trauma, surgery or during progressive degenerative diseases. This review describes the basic physics of diffusion imaging using magnetic resonance, techniques used to visualize diffusion measurements, and expected changes in diffusion measurements following spinal cord injury. © 2008 Wiley Periodicals, Inc.Concepts Magn Reson Part A 32A: 219,237, 2008. [source]


    Singlet states open the way to longer time-scales in the measurement of diffusion by NMR spectroscopy

    CONCEPTS IN MAGNETIC RESONANCE, Issue 1 2008
    Simone Cavadini
    Abstract Nuclear magnetic resonance is a powerful nonintrusive technique for measuring diffusion coefficients through the use of pulsed field gradients. The main limitation to the application range of this method is imposed by the relaxation time constants of the magnetization. The recently introduced singlet-state spectroscopy affords obtaining relaxation time constants for pairs of coupled spins which can be longer by more than an order of magnitude than the spin-lattice relaxation time constants. We review in this paper the advantages that are offered by these long relaxation time constants for diffusion measurements. Using experiments that combine singlet-state and diffusion spectroscopy, slower diffusion constants can be determined. The coupling of the two methods constitutes an alternative to the use of special probes equipped with strong gradients for the study of large molecules that diffuse slowly in solution. © 2008 Wiley Periodicals, Inc. Concepts Magn Reson Part A 32A: 68,78, 2008. [source]


    Plasticity and Grain Boundary Diffusion at Small Grain Sizes,

    ADVANCED ENGINEERING MATERIALS, Issue 8 2010
    Gerhard Wilde
    Bulk nanostructured,or ultrafine-grained materials are often fabricated by severe plastic deformation to break down the grain size by dislocation accumulation. Underlying the often spectacular property enhancement that forms the basis for a wide range of potential applications is a modification of the volume fraction of the grain boundaries. Yet, along with the property enhancements, several important questions arise concerning the accommodation of external stresses if dislocation-based processes are not longer dominant at small grain sizes. One question concerns so-called "non-equilibrium" grain boundaries that have been postulated to form during severe deformation and that might be of importance not only for the property enhancement known already today, but also for spectacular applications in the context of, e.g., gas permeation or fast matter transport for self-repairing structures. This contribution addresses the underlying issues by combining quantitative microstructure analysis at high resolution with grain boundary diffusion measurements. [source]


    Response of native and denatured hen lysozyme to high pressure studied by 15N/1H NMR spectroscopy

    FEBS JOURNAL, Issue 6 2001
    Yuji O. Kamatari
    High-pressure 15N/1H NMR techniques were used to characterize the conformational fluctuations of hen lysozyme, in its native state and when denatured in 8 m urea, over the pressure range 30,2000 bar. Most 1H and 15N signals of native lysozyme show reversible shifts to low field with increasing pressure, the average pressure shifts being 0.069 ± 0.101 p.p.m. (1H) and 0.51 ± 0.36 p.p.m. (15N). The shifts indicate that the hydrogen bonds formed to carbonyl groups or water molecules by the backbone amides are, on average, shortened by ,,0.02 Å as a result of pressure. In native lysozyme, six residues in the , domain or at the ,/, domain interface have anomalously large nonlinear 15N and 1H chemical-shift changes. All these residues lie close to water-containing cavities, suggesting that there are conformational changes involving these cavities, or the water molecules within them, at high pressure. The pressure-induced 1H and 15N shifts for lysozyme denatured in 8 m urea are much more uniform than those for native lysozyme, with average backbone amide shifts of 0.081 ± 0.029 p.p.m. (1H) and 0.57 ± 0.14 p.p.m. (15N). The results show that overall there are no significant variations in the local conformational properties of denatured lysozyme with pressure, although larger shifts in the vicinity of a persistent hydrophobic cluster indicate that interactions in this part of the sequence may rearrange. NMR diffusion measurements demonstrate that the effective hydrodynamic radius of denatured lysozyme, and hence the global properties of the denatured ensemble, do not change detectably at high pressure. [source]


    NMR Studies of Proton Transport in Anhydrous Polymer Electrolytes for High Temperature Fuel Cells,

    FUEL CELLS, Issue 3-4 2008
    H. A. Every
    Abstract This paper presents an NMR study of the dynamic processes related to proton transport in a new polymer consisting of two blocks , poly(2,6-diphenylphenol) (P3O) and an imidazole functionalised poly(2,6-dimethylphenol) (imi-PPE) , and subsequently doped with polyphosphoric acid (PPA). From 1H and 31P NMR relaxation and diffusion measurements of the individual homopolymers and block copolymer, it was observed that addition of PPA significantly enhanced the mobility of imi-PPE and the imi-block copolymer, but not of P3O. The similarity in 1H T2 values between imi-PPE and the imi-block copolymer suggests that the relaxation behaviour in the block copolymer is dominated by the imi-PPE phase. 1H diffusion in P3O and the imi-block copolymer were comparable to pure PPA, suggesting that the proton diffusion is similar in each case. For imi-PPE, the diffusion coefficients were several orders of magnitude lower, reflecting a restricted diffusion process that is not indicative of the proton mobility. For all three polymers, the 31P T2 relaxation behaviour and inability to measure 31P diffusion coefficients imply hindered translational motion of the phosphonate groups. From these results, it can be concluded that hydrogen bonds between the phosphoric acid and the polymer form a network that facilitates proton transport via a hopping mechanism. [source]


    Anhydrous Polymeric Proton Conductors Based on Imidazole Functionalized Polysiloxane

    FUEL CELLS, Issue 3-4 2006
    G. Scharfenberger
    Abstract Intrinsically proton conducting polymers with imidazole as proton solvent tethered to a polysiloxane backbone via a flexible spacer have been synthesized. Apart from the standard characterization also their thermal properties and transport behavior have been investigated. The materials exhibit proton conductivity as a consequence of self-dissociation of the imidazole moieties and "structure diffusion" of the resulting defects. In particular, no liquid phase such as water or monomeric imidazole is needed for the observed proton conductivities. To study the influence of the tether structure on the transport properties, cyclic oligomers and open chain polymers with different spacer lengths have been synthesized. The materials are thermally stable up to 200,°C and become soft around room temperature. The conductivity exhibits VTF and WLF behavior with maximum conductivities around ,,=,1.5.10,3,S,cm,1 at T,=,160,°C. The activation volume of the conductivity as derived from pressure dependent measurements is found to be unusually high. The lowest activation volumes and the highest conductivities are observed for the materials with the highest segmental mobilities, i.e. the longest spacers. Proton self-diffusion coefficients as obtained from PFG NMR diffusion measurements are significantly higher than expected from the proton conductivities obtained by dielectric spectroscopy. This corresponds to unusually high Haven ratios which have been interpreted by correlated proton transfers allowing for fast proton diffusion while minimizing the separation of ionic charge carriers. [source]


    The Diversity of B0 and B1 Gradient NMR Diffusometry Techniques

    ISRAEL JOURNAL OF CHEMISTRY, Issue 1-2 2003
    Ioan Ardelean
    The conventional pulsed gradient Hahn or stimulated echo methods for diffusion measurements are briefly reviewed. Compared to these techniques, unconventional NMR diffusometry variants based on gradients of the amplitude of the radio frequency field, on nonlinear (or multiple) echoes, and on imaging techniques open promising aspects depending on the application envisaged. A series of typical pulse sequences representing the diversity of NMR diffusometry methods is described and discussed with respect to advantages and disadvantages. [source]


    Diffusion measurements and diffusion tensor imaging with noisy magnitude data

    JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 1 2009
    Anders Kristoffersen
    Abstract Purpose To compare an unbiased method for estimation of the diffusion coefficient to the quick, but biased, log-linear (LL) method in the presence of noisy magnitude data. Materials and Methods The magnitude operation changes the signal distribution in magnetic resonance (MR) images from Gaussian to Rician. If not properly taken into account, this will introduce a bias in the estimated diffusion coefficient. We compare two methods by means of Monte Carlo simulations. The first one applies least-squares fitting of the measured signal to the median (MD) value of the probability density function. The second method is uncorrected LL estimation. We also perform a high-resolution diffusion tensor experiment. Results The uncorrected LL estimator is heavily biased at low signal-to-noise ratios. The bias has a significant effect on image quality. The MD estimator is accurate and produces images with excellent contrast. Conclusion In the presence of noisy magnitude data, unbiased estimation is essential in diffusion measurements and diffusion tensor imaging. J. Magn. Reson. Imaging 2009;29:237,241. © 2008 Wiley-Liss, Inc. [source]


    Characterizing bathocuproine self-association and subsequent binding to Alzheimer's disease amyloid ,-peptide by NMR

    JOURNAL OF PEPTIDE SCIENCE, Issue 4 2004
    Shenggen Yao
    Abstract Aggregated amyloid ,-peptide (A,) is the primary constituent of the extracellular plaques and perivascular amyloid deposits associated with Alzheimer's disease (AD). Deposition of the cerebral amyloid plaques is thought to be central to the disease progression. One such molecule that has previously been shown to ,dissolve' deposited amyloid in post-mortem brain tissue is bathocuproine (BC). In this paper 1H NMR chemical shift analysis and pulsed field gradient NMR diffusion measurements were used to study BC self-association and subsequent binding to A,. The results show that BC undergoes self-association as its concentration increases. The association constant of BC dimerization, Ka, was estimated to be 0.64 mM,1 at 25°C from 1H chemical shift analysis. It was also found that dimerization of BC appeared to be essential for its binding to A,. From the self-association constant of BC, Ka, the fraction of dimeric BC in the complex was obtained and the dissociation constant, Kd, of BC bound to A,40 peptide was then determined to be ,1 mM. Copyright © 2003 European Peptide Society and John Wiley & Sons, Ltd. [source]


    Binding of olive oil phenolics to food proteins

    JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 3 2005
    Are Hugo Pripp
    Abstract In this paper we investigate the interaction of phenolics extracted from olive oil with different food proteins (sodium caseinate, bovine serum albumin, ,-lactoglobulin and gelatin). Binding parameters are estimated using different experimental techniques: gel filtration, HPLC, isothermal titration calorimetry and NMR diffusion measurements. For comparison, the binding properties of gallic acid and tannic acid are also studied. The affinity of olive oil phenolics for the different food proteins is found to be relatively weak (compared with tannic acid). Binding constants are measured for the different phenolics in the extract: tyrosol and hydroxytyrosol do not (or very weakly) bind to the proteins, whereas other phenolics in the extract had binding constants of the order 102,104M,1. The binding parameters determined have been discussed in relation to the possible effect of proteins on sensory properties (bitterness) of food emulsions containing olive oil. Copyright © 2004 Society of Chemical Industry [source]


    Monitoring the non-specific interactions of catechin through diffusion measurements based on pulsed-field gradients

    MAGNETIC RESONANCE IN CHEMISTRY, Issue 13 2002
    C. Monteiro
    Abstract The self-association of aqueous catechin as a function of concentration was monitored through variations in 1H chemical shifts, proton T1 and T2 data and translational diffusion coefficients obtained with the pulsed-field gradient spin-echo method. The latter approach is very efficient and it is not restricted to aromatic compounds. Equilibrium constants were estimated for various models of self-association and the apparent enthalpy of dissociation was measured with isothermal titration calorimetry. Comparison of the latter parameter with thermodynamic data reported for various types of non-specific interactions suggests that such phenomena could be studied using this approach. Copyright © 2002 John Wiley & Sons, Ltd. [source]


    Diffusion measurements free of motion artifacts using intermolecular dipole-dipole interactions

    MAGNETIC RESONANCE IN MEDICINE, Issue 1 2004
    Scott D. Kennedy
    Abstract Diffusion encoding, or diffusion weighting, is commonly achieved by applying a pair of balanced pulsed-field gradients during spin evolution. An alternative way to obtain diffusion measurements is to select dipolar correlation distances using the distant dipolar field (DDF) in systems with abundant spin density, such as water in tissues. Diffusion weighting using this effect is unique in that the refocusing "gradient" is carried within the sample, and thus the macroscopic motion of the sample is not expected to interfere with signal formation. The experiments presented here demonstrate that in moving phantoms, the phase shift of the signal due to linear motion is minimal in diffusion-weighted (DW) DDF measurements, and that motion artifacts in images of moving phantoms and the abdomen of live mice are small compared to standard pulsed-field-gradient methods. The technique may facilitate the use of DWI in typically motion-prone regions such as the abdomen, lungs, and heart. Magn Reson Med 52:1,6, 2004. © 2004 Wiley-Liss, Inc. [source]


    Cardiac diffusion MRI without motion effects

    MAGNETIC RESONANCE IN MEDICINE, Issue 1 2002
    Jiangang Dou
    Abstract We present a method for diffusion tensor MRI in the beating heart that is insensitive to cardiac motion and strain. Using a stimulated echo pulse sequence with two electrocardiogram (ECG) triggers, diffusion-encoding bipolar gradient pulses are applied at identical phases in consecutive cardiac cycles. In this experiment, diffusion is encoded at a single phase in the cardiac cycle of less than 30 ms in duration. This encoding produces no phase shifts for periodic motion and is independent of intervening strains. Studies in a gel phantom with cyclic deformation confirm that by using this sequence we can map the diffusion tensor free of effects of cyclic motion. In normal human subjects, myocardial diffusion eigenvalues measured with the present method showed no significant change between acquisitions encoded at maximum contractile velocity (peak) vs. at myocardial standstill (end-systole), demonstrating motion independence of in vivo diffusion measurements. Diffusion tensor images acquired with the present method agree with registered data acquired with a previous cardiac diffusion MRI method that was shown to be valid in the normal heart, strongly supporting the validity of MRI diffusion measurement in the beating heart. Myocardial sheet and fiber dynamics measured during systole showed that normal human myocardial sheet orientations tilt toward the radial during systole, and fiber orientations tilt toward the longitudinal, in qualitative agreement with previous invasive studies in canines. These results demonstrate the technique's ability to measure myocardial diffusion accurately at any point in the cardiac cycle free of measurable motion effect, as if the heart were frozen at the point of acquisition. Magn Reson Med 48:105,114, 2002. © 2002 Wiley-Liss, Inc. [source]


    Determination of Soot Particle Size in a Premixed Flame: a Static and Dynamic Light Scattering Study

    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, Issue 2 2003
    Gert Kroner
    Abstract In this contribution we report upon our static and dynamic light scattering experiments to characterize soot particles in flames. We studied sooting laminar premixed flame with acetylene as fuel mixed with air as oxidizer. The air equivalence ratio of the combustion was larger than one. We used a Kaskan type burner with circular geometry and a stabilizing flow of nitrogen around the flame. We focused on the determination of the size of the soot particles in the center of the flame as a function of height above burner. In addition we investigated the influence of the mixing ratio of the gases on the size of the particles. Our results show that static light scattering is better suited than dynamic light scattering for a fast and reliable characterization of soot particles in flames. The latter needs detailed a priori information about the flame to allow the unique determination of sizes from the diffusion measurements. The soot particles grow monotonously with height above burner and with decreasing air equivalence ratio. The aggregates have a fractal dimension lower than two. [source]


    The interaction of water molecules with purple membrane suspension using 2H double-quantum filter, 1H and 2H diffusion nuclear magnetic resonance

    BIOPOLYMERS, Issue 1 2004
    Limor Frish
    Abstract Bacteriorhodopsin is a membrane protein of the purple membrane (PM) of Halobacterium salinarum, which is isolated as sheets of highly organized two-dimensional hexagonal microcrystals and for which water molecules play a crucial role that affects its function as a proton pump. In this paper we used single- and double-quantum 2H NMR as well as 1H and 2H diffusion NMR to characterize the interaction of water molecules with the PM in D2O suspensions. We found that, under the influence of a strong magnetic field on a concentrated PM sample (0.61 mM), the PM sheets affect the entire water population and a residual quadrupolar splitting (,q ,5.5 Hz, 298 K, at 11.7 T) is observed for the D2O molecules. We found that the residual quadrupolar coupling, the creation time in which a maximal DQF signal was obtained (,max), and the relative intensity of the 2H DQF spectrum of the water molecules in the PM samples (referred to herein as NMR order parameters) are very sensitive to temperature, dilution, and chemical modifications of the PM. In concentrated PM samples in D2O, these NMR parameters seem to reflect the relative organization of the PM. Interestingly, we have observed that some of these parameters are sensitive to the efficiency of the trimer packing, as concluded from the apo-membrane behavior. The data for dionized blue membrane, partially delipidated sample, and detergent-treated PM show that these D2O NMR order parameters, which are magnetic field dependent, are sensitive to the structural integrity of the PM. In addition, we revealed that heating the PM sample inside or outside the NMR magnet has, after cooling, a different effect on the NMR characteristics of the water molecules in the concentrated PM suspensions. The difference in the D2O NMR order parameters for the PM samples, which were heated and cooled in the presence and in the absence of a strong magnetic field, corroborates the conclusions that the above D2O order parameters are indirect reflections of both microscopic and macroscopic order of the PM samples. In addition, 1H NMR diffusion measurements showed that at least three distinct water populations could be identified, based on their diffusion coefficients. These water populations seem to correlate with different water populations previously reported for the PM system. © 2004 Wiley Periodicals, Inc. Biopolymers, 2004 [source]


    Mass Transport in Multilayer Porous Metallic Membranes , Diagnosis, Identification and Validation

    CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 4 2009
    V. Edreva
    Abstract For a reliable description of mass transfer in membrane reactors the multilayer structure of the membrane is essential. This paper discusses methods which are sufficient to distinguish between homogeneous and composite membranes, and some others which are not. Different mass transport experiments (single gas permeation, isobaric diffusion, transient diffusion) with a porous metallic membrane consisting of two layers and the dusty gas model were used for this purpose. Simultaneous identification of mass transport parameters of both layers was achieved by modern optimization techniques on single gas permeation data. These parameters were validated by isobaric or transient diffusion measurements. [source]


    Self-Assembled Ionophores from Isoguanosine: Diffusion NMR Spectroscopy Clarifies Cation's and Anion's Influence on Supramolecular Structure

    CHEMISTRY - A EUROPEAN JOURNAL, Issue 7 2007
    Tamar Evan-Salem
    Abstract Cation-templated self-assembly of the lipophilic isoguanosine (isoG,1) with different monovalent cations (M+=Li+, Na+, K+, NH4+, and Cs+) was studied in solvents of different polarity by using diffusion NMR spectroscopy. Previous studies that did not use diffusion NMR techniques concluded that isoG,1 forms both pentamers (isoG,1)5,M+ and decamers (isoG,1)10,M+ in the presence of alkali-metal cations. The present diffusion NMR studies demonstrate, however, that isoG,1 does not form (isoG,1)5,M+ pentamers. In fact, the diffusion NMR data indicates that both doubly charged decamers of formula (isoG,1)10,2,M+ and singly charged decamers, (isoG,1)10,M+, are formed with lithium, sodium, potassium, and ammonium tetraphenylborate salts (LiB(Ph)4, KB(Ph)4, NaB(Ph)4 and NH4B(Ph)4), depending on the isoG,1:salt stoichiometry of the solution. In the presence of CsB(Ph)4, isoG,1 affords only the singly charged decamers (isoG,1)10,Cs+. By monitoring the diffusion coefficient of the B(Ph)4, ion in the different mixtures of solvents, we also concluded that the anion is more strongly associated to the doubly charged decamers (isoG,1)10,2,M+ than to the singly charged decamers (isoG,1)10,M+. The (isoG,1)10,2,M+ species can, however, exist in solution without the mediation of the anion. This last conclusion was supported by the finding that the doubly charged decamers (isoG,1)10,2,M+ also prevail in 1:1 CD3CN:CDCl3, a solvent mixture in which the B(Ph)4, ion does not interact significantly with the self-assembled complex. These diffusion measurements, which have provided new and improved structural information about these decameric isoG,1 assemblies, demonstrate the utility of combining diffusion NMR techniques with conventional NMR methods in seeking to characterize labile, multicomponent, supramolecular systems in solution, especially those with high symmetry. [source]


    Ensemble Measurement of Diffusion: Novel Beauty and Evidence

    CHEMPHYSCHEM, Issue 15 2009
    Christian Chmelik Dr.
    Abstract Recording the evolution of concentration profiles in nanoporous materials opens a new field of diffusion research with particle ensembles. The technique is based on the complementary application of interference microscopy and IR micro-imaging. Combining the virtues of diffusion measurements with solids and fluids, it provides information of unprecedented wealth and visual power on transport phenomena in molecular ensembles. These phenomena include the diverging uptake and release patterns for concentration-dependent diffusivities, the mechanisms of mass transfer at the fluid,solid interface and opposing tendencies in local and global concentration evolution. [source]