Home About us Contact | |||
Diffusion Cells (diffusion + cell)
Kinds of Diffusion Cells Selected AbstractsDevelopment of hydrogel patch for controlled release of alpha-hydroxy acid contained in tamarind fruit pulp extractINTERNATIONAL JOURNAL OF COSMETIC SCIENCE, Issue 2 2005J. Viyoch Synopsis The aim of this study was to develop hydrogel patch using crosslinked chitosan,starch as polymeric matrix for controlling the release of the natural alpha-hydroxy acid (AHA) contained in the extract of tamarind's fruit pulp. The chitosan (MW 100 000) was blended with corn, tapioca or rice starch in various ratios and then crosslinked with glutaraldehyde. The physical characteristics, mechanical resistance, bio-adhesion property and surface morphology of the prepared hydrogel patches with and without the extract were investigated. The release patterns of the hydrogel patches containing the extract were investigated by measuring the amount of tartaric acid, a major AHA present in the tamarind's fruit pulp extract, accumulated in the receptor medium of the vertical diffusion cell at various time intervals over a period of 6 h. The results indicated that the formulations of chitosan : corn starch 4.5 : 0.5 with glutaraldehyde 0.02% w/w (C4.5C0.5G0.02) or 0.04% w/w (C4.5C0.5G0.04), chitosan : tapioca starch 4.5 : 0.5 with glutaraldehyde 0.04% w/w (C4.5T0.5G0.04) or 0.05% w/w (C4.5T0.5G0.05), and chitosan : rice starch 4.5 : 0.5 with glutaraldehyde 0.04% w/w (C4.5R0.5G0.04) and chitosan : rice starch 4.0 : 1.0 with glutaraldehyde 0.03% w/w (C4.0R1.0G0.03) provided the flexible and elastic patches with good bio-adhesive property. The tensile strength values ranged from 5 to15 N mm,2 and the elasticity ranged from 30 to 60%. The addition of the extract in these formulations significantly increased the tensile strength values of the obtained patches. The patch of C4.0R1.0G0.03 formulation containing the extract showed relatively highest porosity, corresponding to its highest amount (12.02 ± 0.33 mg) and rate (0.452 ± 0.012 mg mm,2 min,1/2) of tartaric acid released. The amounts of tartaric acid released from the developed hydrogel patches were proportional to a square root of time (Higuchi's model), particularly the release from C4.0R1.0G0.03 (R2, 0.9978 ± 0.0020) and C4.5R0.5G0.04 (R2, 0.9961 ± 0.0024) patches. Résumé Le but de cette étude était de développer un patch hydrogel en utilisant, en tant que matrice polymère, un mélange chitosane/amidon réticulé pour le contrôle du relargage d', -hydroxyacide naturel contenu dans l'extrait de la pulpe du fruit du tamarinier. Du chitosane (MW 100 000) a été mélangéà des farines de maïs, de tapioca ou de riz dans différentes proportions, les mélanges ont été réticulés avec du glutaraldéhyde. Les caractéristiques physiques, résistance mécanique, propriétés de bio adhésion et morphologie de surface des patchs hydrogels préparés avec et sans extrait ont étéétudiées. Le profil de relargage des patchs hydrogels contenant l'extrait a étéétudié en mesurant la quantité d'acide tartarique, , -aminoacide majoritaire présent dans l'extrait, accumulé dans le milieu récepteur d'une cellule à diffusion verticale en fonction du temps sur une période de 6 heures. Les résultats ont montré que les formulations contenant: ,,un mélange chitosane/amidon de maïs dans un rapport 4.5 : 0.5 réticulé avec 0.02% ou 0.04% poids/poids de glutaraldéhyde (respectivement C4.5C0.5G0.02 et C4.5 C0.5 G0.04) ou ,,un mélange de chitosane/amidon de tapioca dans un rapport 4.5 : 0.5 réticulé avec 0.04% ou 0.05% poids/poids de glutaraldéhyde (C4.5T0.5 G0.04ou C4.5 T0.5 G0.05) ,,ainsi que le mélange chitosane/amidon de riz dans un rapport 4.5 : 0.5 réticulé avec 0.04% poids/poids de glutaraldehyde (C4.5R0.5 G0.04) ,,et le mélange chitosane/amidon de riz dans un rapport 4.0 : 1.0 réticulé avec 0,03% poids/poids de glutaraldehyde (C4.0 R1.0 G0.03) conduisaient à des patchs flexibles et élastiques avec de bonnes propriétés bio adhésives. Leur résistance mécanique varie de 5 à 15 N/m2 et leur élasticité de 30 à 60%. L'addition de l'extrait de fruit à ces formules augmente significativement la résistance mécanique des patchs. Le patch C4.0R1.0 G0.03 contenant l'extrait montre la plus grande porosité correspondant à la quantité d'acide tartarique relargué la plus élevée (12.02 ± 0.33 mg), ainsi qu'à la plus grande vitesse de relargage (0.452 ± 0.012 mg mm- 2 mn- 1/2). Les quantités d'acide tartarique relarguées à partir de patchs hydrogels développés sont proportionnelles à la racine carrée du temps (modèle d'Higuchi), en particulier pour les patchs C4.0 R1.0G0.03 (R2, 0.9978 ± 0.0020) et C4.5R0.5 C0.004 (R2, 0.9061 ± 0.0024). [source] Synergistic Effects of Iontophoresis and Jet Injector Pretreatment on the In-vitro Skin Permeation of Diclofenac and Angiotensin IIJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 10 2000KENJI SUGIBAYASHI A non-needle syringe (jet injector) was utilized to increase skin permeation of drugs by iontophoresis. Briefly, physiological saline was initially flushed by the injector to make a pore in the stratum corneum of excised hairless rat skin, and the iontophoretic skin permeation of two model compounds, sodium diclofenac and angiotensin II, was followed using a 2-chamber diffusion cell. Constant voltage and constant current iontophoresis treatments were evaluated. Pretreatment using the jet injector alone resulted in about 13- and 22-fold increases in the steady-state flux of diclofenac and angiotensin II, respectively, through the skin, compared with non-treated controls. Jet injector pretreatment with constant voltage iontophoresis further enhanced skin permeation of diclofenac and angiotensin II, and the enhancement was also greater than that by constant voltage iontophoresis alone. Thus, a synergistic effect was observed. The ratio of enhancement was greater compared with the control. Jet injector pretreatment with constant current iontophoresis, however, did not always yield higher skin permeation of the drugs than injector pretreatment alone, although the lag time was shortened. The difference in the enhancement between the constant voltage- and constant current iontophoresis can be explained by the electric current through the excised skin. Constant current iontophoresis after a short period of constant voltage iontophoresis with multiple jet injector pretreatments may be the best way to increase drug permeability while preventing severe skin damage. [source] Influence of the Non-Perfect Step Input Concentration at the Feed Side of the Membrane Surface on the Diffusion Coefficient EvaluationMACROMOLECULAR THEORY AND SIMULATIONS, Issue 3 2006Jirina Cermakova Abstract Summary: Vapor diffusion coefficients in polymeric membranes were evaluated from dynamic permeation experiments. A membrane separated the diffusion cell into two parts , upstream and downstream. At the start of the experiment the concentration change in the upstream part (feed side) was made by substituting the input stream of pure nitrogen by the stream of permeant vapors. The solution of the Fick's second law with the step input concentration function is used for the evaluation of diffusion coefficients. The realization of the step input function can be difficult and its imperfection can negatively influence the evaluation process. This contribution deals with the description of the experimentally obtained input function and the study of its influence on evaluated values of diffusion coefficients. The mathematical model, which includes the non-perfect step input concentration function and the transport through a polymer was developed. The results of this study enable the estimation of diffusion coefficient evaluation errors as dependence on the experimental arrangements and on the membrane transport properties. Diffusion apparatus for measurement of the steady-state permeation process. [source] Effective Diffusivities and Convective Coefficients for CaO-CaSO4 and CaO-CaCl2 PelletsCHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 1 2004C. Akosman Abstract Diffusion and convective flow in the pores of pellets formed by compressing mixtures of calcined limestone and CaSO4/CaCl2 powders have been studied experimentally by using the single pellet moment technique. The experiments were conducted in a diffusion cell by flowing nitrogen gas (carrier) through both faces of the pellet. Limestone powder was calcined in an atmosphere of N2 at 800,°C and mixed with CaSO4/CaCl2 for diffusion experiments. Effective diffusivity of helium has been estimated by exposing the upper face of the pellet to a pulse of and matching the response peak on the lower face of the pellet with theoretical expressions. The values of the effective diffusivities increased with temperature, but decreased with increasing CaSO4/CaCl2 content in the pellet. The convective flow contribution to the diffusion flux was found to increase with increasing pressure drop across the pellet. [source] In vitro permeation of diclofenac sodium from novel microemulsion formulations through rabbit skinDRUG DEVELOPMENT RESEARCH, Issue 1 2005Gülten Kantarc Abstract In order to increase topical penetration of the nonsteroidal anti-inflammatory drug, diclofenac sodium, new microemulsion formulations were prepared to increase drug solubility and in vitro penetration of the drug. The influence of dimethyl sulfoxide and propylene glycol were also investigated as enhancers on the in vitro penetration of diclofenac sodium using Franz diffusion cells using excised dorsal rabbit skin. Factorial randomized design was performed to analyze the results of in vitro permeation studies. Microemulsions prepared with isopropyl alcohol were superior to those prepared with propanol. Enhancers had different effects depending on the formulation. Propylene glycol was superior to dimethyl sulfoxide when incorporated into isopropyl alcohol microemulsion, whereas dimethyl sulfoxide was superior to propylene glycol in propanol microemulsions. There were no observable histopathological differences between the skin of the control group and the treated groups at the light microscope level due to swelling of the skin tissue. The present study shows that microemulsion formulations containing isopropyl alcohol as co-surfactant and propylene glycol as enhancer represent a promising approach for a topical vehicle for diclofenac sodium. Drug Dev. Res. 65:17,25, 2005. © 2005 Wiley-Liss, Inc. [source] Study and description of hydrogels and organogels as vehicles for cosmetic active ingredientsINTERNATIONAL JOURNAL OF COSMETIC SCIENCE, Issue 4 2010M. E. Morales J. Cosmet. Sci., 60, 627,636 (November/December 2009) Synopsis Cellulite, a clinical syndrome mainly affecting women, involves specific changes in conjunctive dermic and subcutaneous tissue, leading to vascular and hypertrophic alterations in adipose tissues and the consequent alteration of tissue structure. This paper describes the design of hydrogels and pluronic-lecithin organogels elaborated as vehicles of Aloe vera (Aloe vera linné) and Hydrocotyle asiatica (Centella asiatica) for the treatment of cellulite. The objective of this work was to carry out a complete evaluation of the proposed formulae through the study of the organoleptic and rheological properties of the formulae. Our work revealed that, in appearance, hydrogels show better organoleptic characteristics than organogels. On the other hand, from a rheological point of view, both hydrogels and organogels display a plastic behavior. However, the main difference between the two is that the more complex internal structure of the organogel bestows it with more viscosity. Finally, in vitro tests with Franz-type diffusion cells revealed that the release of cosmetic active principle from the tested excipients was appropriate, both in terms of magnitude and velocity. [source] Bilayered nail lacquer of terbinafine hydrochloride for treatment of onychomycosisJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 10 2010H.N. Shivakumar Abstract The present study aimed to develop bilayered nail lacquer of terbinafine hydrochloride (TH) for treatment of onychomycosis. The composite nail lacquer formed an underlying drug-loaded hydrophilic layer and overlying hydrophobic vinyl layer. The hydrophilic lacquer made of hydroxylpropyl methylcellulose E-15 contained polyethylene glycol 400 (PEG 400) as a drug permeation enhancer. The vinyl lacquer was composed of poly (4-vinyl phenol) as a water-resistant film former. In vitro permeation studies in Franz diffusion cells indicated that the amount of TH permeated across the human cadaver nail in 6 days was 0.32,±,0.14, 1.12,±,0.42, and 1.42,±,0.53,µg/cm2 from control (hydrophilic lacquer devoid of PEG 400), monolayer (hydrophilic lacquer alone), and bilayered nail lacquers, respectively. A higher nail drug load was seen in vitro with the bilayered lacquer (0.59,±,0.13,µg/mg) as compared to monolayer (0.36,±,0.09,µg/mg) and control (0.28,±,0.07,µg/mg) lacquers. The drug loss despite multiple washing was significantly low (p,<,0.001) for the bilayered lacquer owing to the protective vinyl coating. Clinical studies demonstrated the efficacy of bilayered lacquer to achieve better drug load in the nail plate (1.27,±,0.184,µg/mg) compared to monolayer (0.67,±,0.18,µg/mg) and control (0.21,±,0.04,µg/mg) lacquers. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:4267,4276, 2010 [source] Design of improved permeation enhancers for transdermal drug deliveryJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 11 2009Srinivas S. Godavarthy Abstract One promising way to breach the skin's natural barrier to drugs is by the application of chemicals called penetration enhancers. However, identifying potential enhancers is difficult and time consuming. We have developed a virtual screening algorithm for generating potential chemical penetration enhancers (CPEs) by integrating nonlinear, theory-based quantitative structure,property relationship models, genetic algorithms, and neural networks. Our newly developed algorithm was used to identify seven potential CPE molecular structures. These chemical enhancers were tested for their toxicity on (a) mouse embryonic fibroblasts (MEFs) with MTT assay, and (b) porcine abdominal skin by histology using H/E staining at the end of a 48-h exposure period to the chemicals. Further, melatonin permeability in the presence of the enhancers was tested using porcine skin and Franz diffusion cells. Careful toxicity tests showed that four of the seven "general" CPEs were nontoxic candidate enhancers (menthone, 1-(1-adamantyl)-2-pyrrolidinone, R(+)-3-amino-1-hydroxy-2-pyrrolidinone, and 1-(4-nitro-phenyl)-pyrrolidine-2,5-dione). Further testing of these four molecules as potential melatonin-specific CPEs revealed that only menthone and 1-dodecyl-2-pyrrolidinone provided sufficient enhancement of the melatonin permeation. The results from our permeability and toxicity measurements provide validation of the efficacy and ability of our virtual screening algorithm for generating potential chemical enhancer structures by virtual screening algorithms, in addition to providing additional experimental data to the body of knowledge. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:4085,4099, 2009 [source] Delivery of nerve growth factor to brain via intranasal administration and enhancement of brain uptakeJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 10 2009Siva Ram Kiran Vaka Abstract The main objective of the study was to investigate the efficacy of chitosan to facilitate brain bioavailability of intranasally administered nerve growth factor (NGF). In vitro permeability studies and electrical resistance studies were carried out across the bovine olfactory epithelium using Franz diffusion cells. The bioavailability of intranasally administered NGF in rat hippocampus was determined by carrying out brain microdialysis in Sprague,Dawley rats. The in vitro permeation flux across the olfactory epithelium of NGF solution without chitosan (control) was found to be 0.37,±,0.06 ng/cm2/h. In presence of increasing concentration of chitosan (0.1%, 0.25%, and 0.5%, w/v) the permeation flux of NGF was found to be 2.01,±,0.12, 3.88,±,0.19, and 4.12,±,0.21 ng/cm2/h respectively. Trans-olfactory epithelial electrical resistance decreased ,34.50,±,4.06% in presence of 0.25% (w/v) chitosan. The Cmax in rats administered with 0.25% (w/v) chitosan and NGF was 1008.62,±,130.02 pg/mL, which was significantly higher than that for rats administered with NGF only 97.38,±,10.66 pg/mL. There was ,14-fold increase in the bioavailability of intranasally administered NGF with chitosan than without chitosan. Chitosan can enhance the brain bioavailability of intranasally administered NGF. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:3640,3646, 2009 [source] Investigation of nail permeation enhancement by chemical modification using water as a probeJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 2 2002Gouri G. Malhotra Abstract Our objective was to screen molecules that could interact with keratin in the human nail and thereby improve the topical penetration of actives into and through the nail plate. We used specialized Franz-type diffusion cells for our permeation experiments and water as a marker molecule. Aqueous/hydroalcoholic gels containing the enhancers were spiked with tritiated water and compared with a control (without enhancer). We computed the normalized water flux (defined as a product of flux and nail thickness) for each gel. We defined an enhancement factor for water as the ratio of the normalized water flux from a gel containing enhancer to that of the control. Our results indicate that the chemical structure of the modifier is most important in determining its ability to enhance penetration. The best enhancement effect was obtained using N-(2-mercaptopropionyl) glycine, a mercaptan derivative of an amino acid, in combination with urea. The concentration of each chemical modifier was linearly related to normalized water flux and mercaptan levels were more important that urea levels in penetration enhancement. Barrier integrity of nails was compromised after treatment with effective chemical modifiers. Thus, we have developed a suitable technique to screen nail penetration enhancers using water as a probe. © 2002 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 91:312,323, 2002 [source] Tocopheryl acetate disposition in porcine and human skin when administered using lipid nanocarriersJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 6 2010Mojgan Moddaresi Abstract Objectives Assessing the delivery of a drug into the skin when it has been formulated within a nanocarrier is a complex process that does not conform to the conventions of traditional semi-solid formulations. The aim of this study was to gain a fundamental understanding of drug disposition in both human and porcine skin when applied using a lipidic nanocarrier. Methods A model system was generated by loading tocopheryl acetate into a well-characterised solid lipid nanoparticle and formulating this system as a traditional aqueous hyaluronic acid gel. Franz diffusion cells fitted with a silicone or nylon membrane were used to assess drug and particle transport independently whilst human and pig skin were employed to determine skin delivery. Key findings The tocopheryl acetate, when loaded into the solid lipid nanoparticles, did not release from the particle. However, 1.65 ± 0.90% of an infinite dose of tocopheryl acetate penetrated into the stratum corneum of pig skin when delivered using a nanoparticle-containing gel. Conclusions These results suggest that hydration of the stratum corneum in pig skin could lead to the opening of hydrophilic pores big enough for 50 nm-sized particles to pass into the superficial layers of the skin, a phenomenon that was not repeated in human skin. [source] Permeation of bioactive constituents from Arnica montana preparations through human skin in-vitroJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 9 2006I. A. Tekko This study investigated and characterised transdermal permeation of bioactive agents from a topically applied Arnica montana tincture. Permeation experiments conducted over 48 h used polydimethylsiloxane (silastic) and human epidermal membranes mounted in Franz-type diffusion cells with a methanol-water (50:50 v/v) receptor fluid. A commercially available tincture of A. montana L. derived from dried Spanish flower heads was a donor solution. Further donor solutions prepared from this stock tincture concentrated the tincture constituents 1, 2 and 10 fold and its sesquiterpene lactones 10 fold. Permeants were assayed using a high-performance liquid chromatography method. Five components permeated through silastic membranes providing peaks with relative retention factors to an internal standard (santonin) of 0.28, 1.18, 1.45, 1.98 and 2.76, respectively. No permeant was detected within 12 h of applying the Arnica tincture onto human epidermal membranes. However, after 12 h, the first two of these components were detected. These were shown by Zimmermann reagent reaction to be sesquiterpene lactones and liquid chromatography/diode array detection/mass spectrometry indicated that these two permeants were 11,13-dihydrohelenalin (DH) analogues (methacrylate and tiglate esters). The same two components were also detected within 3 h of topical application of the 10-fold concentrated tincture and the concentrated sesquiterpene lactone extract. [source] Skin permeation of retinol in Tween 20-based deformable liposomes: in-vitro evaluation in human skin and keratinocyte modelsJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 2 2006Yu-Kyoung Oh To develop a more effective transdermal delivery method for lipophilic functional cosmetic compounds such as retinol, we formulated various deformable liposomes and compared their transdermal delivery efficiency with those of neutral or negatively-charged conventional liposomes. We tested the deformability of liposomes containing edge activators such as bile salts, polyoxyethylene esters and polyoxyethylene ethers. As indicators of deformability, we used the passed volume and phospholipid ratios during extrusion, as well as the deformability index. We found that the type of edge activator significantly affected the extent of deformability, and that Tween 20 provided the highest level of deformability. Accordingly, we used Tween 20 to formulate deformable liposomes containing retinol in the membrane bilayers, and conducted a skin permeation study in Franz diffusion cells, using dermatomed human skin and three-dimensional human keratinocyte layers. As compared with the use of conventional neutral or negatively-charged liposomes, the use of Tween 20-based deformable liposomes significantly increased the skin permeation of retinol. These results suggested that deformable liposomes might be of potential use for the formulation of retinol and other lipophilic functional cosmetic compounds. [source] Dermal delivery of desmopressin acetate using colloidal carrier systemsJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 4 2005Melkamu Getie Recently, the transdermal route has received attention as a promising means to enhance the delivery of drug molecules, particularly peptides, across the skin. In this work, the skin penetration profiles of desmopressin acetate from a colloidal system (water-in-oil microemulsion) and an amphiphilic cream, a standard formulation, were determined using Franz diffusion cells and compared. In the case of the microemulsion, the total percentages of dose obtained from different skin layers (stratum corneum to subcutaneous tissue) were 3.30 ± 0.67, 7.37 ± 2.43 and 15.54 ± 2.72 at 30, 100 and 300 min, respectively. Similarly, 5.19 ± 0.96, 8.04 ± 0.97 and 14.4 ± 5.15% of the dose applied was extracted from the skin treated with the cream. About 6% of the applied dose reached the acceptor compartment from the microemulsion instead of 2% from the cream within 300 min. The concentration of drug that penetrated into the upper layers of the skin was higher from the cream than from the microemulsion at all time intervals. On the other hand, a higher amount of drug was found in the deeper skin layers and in the acceptor compartment from the microemulsion. [source] In-vitro transcutaneous delivery of tamoxifen and ,-linolenic acid from borage oil containing ethanol and 1,8-cineoleJOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 11 2004Suzanna Ho The objective of this study was to examine the effects of ethanol and 1,8-cineole on the transcutaneous delivery of tamoxifen and ,-linolenic acid (GLA) as a two-pronged anti-breast cancer therapy. Formulations containing tamoxifen and varying concentrations of borage oil (,25% GLA), 1,8-cineole and ethanol were prepared and the simultaneous permeation of tamoxifen and GLA determined across full-thickness pig skin using Franz-type diffusion cells over 48 h. Analysis of tamoxifen and GLA (as methyl ester) were by reverse-phase HPLC. The highest flux of tamoxifen of 488.2 ± 191 times 10,3 ,g cm,2 h,1 was observed with a formulation containing 20% 1,8-cineole and 20% ethanol. The same formulation also provided the greatest flux of GLA, 830.6 times 10,3 ,g cm,2 h,1. The findings from this work demonstrate the ability of 1,8-cineole and ethanol to enhance the in-vitro permeation of tamoxifen and GLA across the skin and support the plausibility of simultaneously delivering tamoxifen and GLA transcutaneously as a two-pronged anti-breast cancer system. [source] Effect of solute lipophilicity on penetration through canine skinAUSTRALIAN VETERINARY JOURNAL, Issue 12 2003PC MILLS Objective To investigate the effect of lipophilicity on the percutaneous penetration of a homologous series of alcohols through canine skin Design Skin harvested from Greyhound thorax was placed in Franz-type diffusion cells and the in vitro passage of radio-labelled (14C) alcohols (ethanol, butanol, hexanol and octanol (Log P 0.19 - 3.0)) through separate skin sections was measured in replicates of five. Permeability coefficient (kP, cm/h), maximum flux (Jmax, mol/cm2/h) and residue remaining within the skin were determined. Results The kP increased with increasing lipophilicity (6.2 times 10 -4± 1.6 times 10 -4 cm/h for ethanol to 1.8 times 10 -2± 3.6 times 10 -3 cm/h for octanol). Alcohol residues remaining within each skin sample followed a similar pattern. An exponential decrease in Jmax with increasing lipophilicity was observed. Conclusion Changes in canine skin permeability occur with increasing alcohol lipophilicity. This finding has practical consequences for the design of topical formulations and optimisation of drug delivery through animal skin. [source] Skin disposition of menthol after its application in the presence of drug substancesBIOPHARMACEUTICS AND DRUG DISPOSITION, Issue 8 2008Krzysztof Cal Abstract Many drug products that are applied onto the skin contain menthol. Menthol plays a dual role in the analgesic and anti-inflammatory drugs: it causes cooling and local anesthetic effects and, being a penetration enhancer, it increases the skin permeation of the drug substances. However, there are no data concerning the skin penetration of menthol after its application in the most commonly used vehicles and in the presence of drug substances. Therefore, this study evaluated the ex vivo skin disposition of menthol after application of the commercially available drug products containing aluminum acetotartrate, methyl salicylate, ibuprofen and naproxen, using full human-skin mounted in flow-through diffusion cells. After 15, 30 and 60,min of application, the skin was progressively tape-stripped into three fractions of stratum corneum and the remaining epidermis with dermis. The content of menthol in the skin layers was determined by GC method. Varying degrees of penetration of menthol into the skin layers was observed, depending on its amount in the vehicle and the presence of drug substance. In the presence of aluminum acetotartrate, the skin penetration of menthol was limited only to the outer fraction of the stratum corneum. In the case of drug products containing naproxen, the concentration of the drug substance significantly influenced the skin penetration of menthol. Copyright © 2008 John Wiley & Sons, Ltd. [source] |