Home About us Contact | |||
Diffusible Molecules (diffusible + molecule)
Selected AbstractsNitric oxide in plants: the history is just beginningPLANT CELL & ENVIRONMENT, Issue 3 2001M. V. Beligni ABSTRACT Nitric oxide (NO) is a bioactive molecule that exerts a number of diverse activities in phylogenetically distant species, as well as opposing effects in related biological systems. It was firstly described in mammals as a major messenger in the cardiovascular, immune and nervous system, in which it plays regulatory, signalling, cytoprotective and cytotoxic effects (Ignarro, Annual Review of Pharmacology and Toxicology 30, 535,560, 1990; Anbar, Experientia 51, 545,550, 1995). This versatility is mainly achieved through interactions with targets via either a redox or an additive chemistry (Stamler, Cell 78, 931,936, 1994). For this reason, metal- and thiol-containing proteins serve as major target sites for NO: these include signalling proteins, receptors, enzymes, transcription factors and DNA, among others. Furthermore, NO is a small, highly diffusible molecule. It rapidly crosses biological membranes and triggers various different processes in a short period of time. In this context, NO can co-ordinate and regulate cellular functions of microsomes and organelles such as mitochondria. The ubiquity of NO reactions, as well as the finding that the biochemical and molecular mechanisms underlying many physiological processes are well conserved between diverse species, have opened the exploration of NO chemistry in different organisms. Among these, plants were not the exception. The research in plants has been focused on three main fields: (i) the search for NO or any source of NO generation; (ii) the examination of the effects of NO upon exogenous treatments; and (iii) the search for the same molecules involved in NO-sensitive transduction pathways as in animals (e.g. cGMP, Ca2+, calmodulin). As it is evident from this review, recent progress on NO functionality in plants has been impressive. With the use of biochemistry, molecular genetics and structural biology, together with classical physiological approaches, an explosion of new discoveries will surely begin. It is certainly a good time for plant biologists. [source] Comparison of the effects of HGF, BDNF, CT-1, CNTF, and the branchial arches on the growth of embryonic cranial motor neuronsDEVELOPMENTAL NEUROBIOLOGY, Issue 2 2002Arifa Naeem Abstract In the developing embryo, axon growth and guidance depend on cues that include diffusible molecules. We have shown previously that the branchial arches and hepatocyte growth factor (HGF) are growth-promoting and chemoattractant for young embryonic cranial motor axons. HGF is produced in the branchial arches of the embryo, but a number of lines of evidence suggest that HGF is unlikely to be the only factor involved in the growth and guidance of these axons. Here we investigate whether other neurotrophic factors could be involved in the growth of young cranial motor neurons in explant cultures. We find that brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) and cardiotrophin-1 (CT-1) all promote the outgrowth of embryonic cranial motor neurons, while glial cell line-derived neurotrophic factor (GDNF) and neurotrophin-3 (NT-3) fail to affect outgrowth. We next examined whether HGF and the branchial arches had similar effects on motor neuron subpopulations at different axial levels. Our results show that HGF acts as a generalized rather than a specific neurotrophic factor and guidance cue for cranial motor neurons. Although the branchial arches also had general growth-promoting effects on all motor neuron subpopulations, they chemoattracted different axial levels differentially, with motor neurons from the caudal hindbrain showing the most striking response. © 2002 Wiley Periodicals, Inc. J Neurobiol 51: 101,114, 2002 [source] Radiation-induced bystander effects in malignant trophoblast cells are independent from gap junctional communicationJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2008Ferya Banaz-Ya Abstract It is controversially discussed that irradiation induces bystander effects via gap junction channels and/or diffusible cellular factors such as nitric oxide or cytokines excreted from the cells into the environment. But up to now the molecular mechanism leading to a bystander response is not well understood. To discriminate between both mechanisms of bystander response, (i) mediated by gap junctional communication and/or (ii) mediated by diffusible molecules, we used non-communicating Jeg3 malignant trophoblast cells transfected with inducible gap junction proteins, connexin43 and connexin26, respectively, based on the Tet-On system. We co-cultivated X-ray irradiated and non-irradiated bystander Jeg3 cells for 4 h, separated both cell populations by flow cytometry and evaluated the expression of activated p53 by Western blot analysis. The experimental design was proven with communicating versus non-communicating Jeg3 cells. Interestingly, our results revealed a bystander effect which was independent from gap junctional communication properties and the connexin isoform expressed. Therefore, it seems more likely that the bystander effect is not mediated via gap junction channels but rather by paracrine mechanisms via excreted molecules in Jeg3 cells. J. Cell. Biochem. 103: 149,161, 2008. © 2007 Wiley-Liss, Inc. [source] Important roles for epithelial cell peptides in hydra developmentBIOESSAYS, Issue 6 2009Toshio Takahashi Abstract It has been convincingly shown that peptides play important roles in the regulation and maintenance of a variety of tissues and organs in living animals. However, little is known concerning the potential role of peptides as signaling molecules in developmental processes. In Hydra, there is circumstantial evidence that small diffusible molecules act as morphogens in the regulation of patterning processes. In order to view the entire spectrum of peptide signaling molecules, we initiated a project aiming at the systematic identification of peptide signaling molecules in Hydra. In this review, we describe three peptide signaling molecules and one family of peptides that function as signaling molecules in the processes of axial pattern formation and neuron differentiation in Hydra. These peptides are produced by epithelial cells and are therefore termed "epitheliopeptides". We discuss the importance of epitheliopeptides in developmental processes within a subset of hydrozoans. [source] |