Home About us Contact | |||
Diffuse X-ray Emission (diffuse + x-ray_emission)
Selected AbstractsOn the Chandra Detection of Diffuse X-Ray Emission from Sgr A*ASTRONOMISCHE NACHRICHTEN, Issue S1 2003M. E. Pessah Abstract Kinematic studies of the stellar motions near Sgr A* have revealed the presence of several million solar masses of dark matter enclosed within 0.015 parsecs of the Galactic Center. However, it is not yet clear what fraction of this material is contained within a single point-like object, as opposed to an extended distribution of orbiting matter (e.g., in the form of neutron stars). Recent Chandra observations suggest that the X-ray emission from this source is partially diffuse. This result provides an important clue that can be used to set some constraints on the mass distribution surrounding the black hole. Here, we develop a simple model in which the diffuse emission is produced by a halo of neutron stars accreting from the gas falling toward the center. We discuss the various accretion mechanisms that are likely to contribute significantly to the X-ray flux, and show that a highly magnetized fraction of old neutron stars may account for the diffuse high-energy source. If this picture is correct, the upper bound to the mass of the central black hole is ,2.2 × 106M,. The core radius of the dark cluster must then be ,0.06 pc. We also discuss the sensitivity of our results to the various assumptions made in our calculations. [source] Are fossil groups a challenge of the cold dark matter paradigm?MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2009Stefano Zibetti ABSTRACT We study six groups and clusters of galaxies suggested in the literature to be ,fossil' systems (i.e. to have luminous diffuse X-ray emission and a magnitude gap of at least 2 mag R between the first and the second ranked member within half of the virial radius), each having good quality X-ray data and Sloan Digital Sky Survey (SDSS) spectroscopic or photometric coverage out to the virial radius. The poor cluster AWM 4 is clearly established as a fossil system, and we confirm the fossil nature of four other systems (RX J1331.5+1108, RX J1340.6+4018, RX J1256.0+2556 and RX J1416.4+2315), while the cluster RX J1552.2+2013 is disqualified as fossil system. For all systems, we present the luminosity functions within 0.5 and 1 virial radius that are consistent, within the uncertainties, with the universal luminosity function of clusters. For the five bona fide fossil systems, having a mass range 2 × 1013,3 × 1014 M,, we compute accurate cumulative substructure distribution functions (CSDFs) and compare them with the CSDFs of observed and simulated groups/clusters available in the literature. We demonstrate that the CSDFs of fossil systems are consistent with those of normal observed clusters and do not lack any substructure with respect to simulated galaxy systems in the cosmological , cold dark matter (,CDM) framework. In particular, this holds for the archetype fossil group RX J1340.6+4018 as well, contrary to earlier claims. [source] H i imaging of galaxies in X-ray bright groupsMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2007Chandreyee Sengupta ABSTRACT Environment plays an important role in the evolution of the gas contents of galaxies. Gas deficiency of cluster spirals and the role of the hot intracluster medium in stripping gas from these galaxies is a well-studied subject. Loose groups with diffuse X-ray emission from the intragroup medium (IGM) offer an intermediate environment between clusters and groups without a hot IGM. These X-ray bright groups have smaller velocity dispersion and lower temperature than clusters, but higher IGM density than loose groups without diffuse X-ray emission. A single-dish comparative study of loose groups with and without diffuse X-ray emission from the IGM, showed that the galaxies in X-ray bright groups have lost more gas on average than the galaxies in non X-ray bright groups. In this paper we present GMRT H i observations of 13 galaxies from four X-ray bright groups: NGC 5044, 720, 1550 and IC1459. The aim of this work is to study the morphology of H i in these galaxies and to see if the hot IGM has in any way affected their H i content or distribution. In addition to disturbed H i morphology, we find that most galaxies have shrunken H i discs compared to the field spirals. This indicates that IGM-assisted stripping processes like ram pressure may have stripped gas from the outer edges of the galaxies. [source] H i content in galaxies in loose groupsMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 1 2006Chandreyee Sengupta ABSTRACT Gas deficiency in cluster spirals is well known and ram-pressure stripping is considered the main gas removal mechanism. In some compact groups too gas deficiency is reported. However, gas deficiency in loose groups is not yet well established. Lower dispersion of the member velocities and the lower density of the intragroup medium in small loose groups favour tidal stripping as the main gas removal process in them. Recent releases of data from the H i Parkes All-Sky Survey (HIPASS) and catalogues of nearby loose groups with associated diffuse X-ray emission have allowed us to test this notion. In this paper, we address the following questions: (i) do galaxies in groups with diffuse X-ray emission statistically have lower gas content compared to the ones in groups without diffuse X-ray emission? (ii) does H i deficiency vary with the X-ray luminosity, LX, of the loose group in a systematic way? We find that (i) galaxies in groups with diffuse X-ray emission, on average, are H i deficient, and have lost more gas compared to those in groups without X-ray emission; the latter are found not to have significant H i deficiency; (ii) no systematic dependence of the H i deficiency with LX is found. Ram-pressure-assisted tidal stripping and evaporation by thermal conduction are the two possible mechanisms to account for this excess gas loss. [source] |