Home About us Contact | |||
Diesel Engine (diesel + engine)
Selected AbstractsFriction effect on the characteristic performance of Diesel enginesINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 11 2002Lingen Chen Abstract An irreversible model for an air standard Diesel engine is presented in this paper. This model takes into account the finite-time evolution of the cycle's compression and power strokes and it considers global losses lumped in a friction-like term. The relations between the power output and the compression ratio, as well as between the thermal efficiency and the compression ratio are derived. The maximum power output with the corresponding efficiency, and the maximum efficiency with the corresponding power output are calculated versus compression ratio. Copyright © 2002 John Wiley & Sons, Ltd. [source] DoE in engine developmentQUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, Issue 6 2008Karsten Röpke Abstract Stricter legal emission limits and increasing customer expectations lead to a growing number of controllable engine components and thus to a higher engine control complexity. For engine development, however, this means much greater time and effort is required to find the optimal combination of all selectable parameters. This trend can be observed in the field of Gasoline as well as for Diesel engines. At the same time, the development time from the first idea up to the introduction of a new production engine has become even shorter, and the costs have to be reduced. Since the number of measuring points required for complete operational-test measurements rises exponentially with the number of input variables, it is quite obvious that full factorial measurements are no longer possible. Therefore the method ,Design of Experiments' (DoE) is widely accepted as a suitable tool in the automotive sector and among its suppliers. In the meantime the term ,DoE'/,DoE-Process' covers often also the measurement procedure and the modeling. Likewise, this method is broadly applied in the IAV (author's note: IAV is a German provider of engineering services to the automotive industry) during the advanced development stage up to the production engine applications. Whereas DoE is used mainly in the area of steady-state applications recent research work shows a great potential also to optimize transient engine behavior. This paper will give an overview about the usage of statistical methods (mainly Design of Experiments) in the production engine calibration. ,Engine calibration' is the term for finding the optimal settings of the engine controller unit; optimal in terms of minimal emissions, minimal fuel consumption, good drivability and other brand specific goals. Copyright © 2008 John Wiley & Sons, Ltd. [source] Environmentally Benign Production of Biodiesel Using Heterogeneous CatalystsCHEMSUSCHEM CHEMISTRY AND SUSTAINABILITY, ENERGY & MATERIALS, Issue 2 2009Michikazu Hara, Prof. Abstract Fuelling the future: The production of esters of higher fatty acids from plant materials is of great interest for the manufacture of biodiesel. Heterogeneous catalysts can provide new routes for the environmentally benign production of biodiesel. Particulate heterogeneous catalysts can be readily separated from products following reaction allowing the catalyst to be reused, generating less waste, and consuming less energy. Diesel engines are simple and powerful, and exhibit many advantages in energy efficiency and cost. Therefore, the production of higher fatty acid esters from plant materials has become of interest in recent years for the manufacture of biodiesel, a clean-burning alternative fuel. The industrial production of biodiesel mostly proceeds in the presence of "soluble" catalysts such as alkali hydroxides and liquid acids. A considerable amount of energy is required for the purification of products and catalyst separation, and furthermore these catalysts are not reusable. This process results in substantial energy wastage and the production of large amounts of chemical waste. Particulate heterogeneous catalysts can be readily separated from products following reaction, allowing the catalyst to be reused and consuming less energy. This Minireview describes the environmentally benign production of biodiesel using heterogeneous catalysts such as solid bases, acid catalysts, and immobilized enzymes. [source] Cold flow properties of fuel mixtures containing biodiesel derived from animal fatty wasteEUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY, Issue 9 2006Kiril Kazancev Abstract The aims of the present study were to evaluate the cold temperature behavior of methyl esters of vegetable and animal origin and of their mixtures with fossil diesel fuel, as well as to investigate the effectiveness of different depressants. Various blends of rapeseed oil methyl esters, linseed oil methyl esters, pork lard methyl esters and fossil diesel fuel were prepared, and both cloud point and cold filter plugging point (CFPP) were analyzed. It was found that mixtures with CFPP values of ,5,°C and lower may contain up to 25% of pork lard methyl esters; whereas the ratio of summer fossil diesel fuel and rapeseed oil methyl esters may vary over a wide range, i.e. such mixtures can be used in a diesel engine in the summer. In the transitory periods it is possible to use up to 20% animal and vegetable ester blends (3,:,7) with winter fossil diesel, whereas only up to 5% of esters can be added to the fuel used in winter. In order to improve the cold properties of rapeseed oil, pork lard and linseed oil methyl ester mixtures, various additives were tested. Depressant Viscoplex 10,35 with an optimal dose of 5000,mg/kg was found to be the most effective. [source] An experimental investigation on manifold-injected hydrogen as a dual fuel for diesel engine system with different injection durationINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 15 2009N. Saravanan Abstract Stringent emission norms and rapid depletion of petroleum resources have resulted in a continuous effort to search for alternative fuels. Hydrogen is one of the best alternatives for conventional fuels. Hydrogen has both the benefits and limitation to be used as a fuel in an automotive engine system. In the present investigation, hydrogen was injected into the intake manifold by using a hydrogen gas injector and diesel was introduced in the conventional, mode which also acts as an ignition source for hydrogen combustion. The flow rate of hydrogen was set at 5.5,l,min,1 at all the load conditions. The injection timing was kept constant at top dead center (TDC) and injection duration was adjusted to find the optimized injection condition. Experiments were conducted on a single cylinder, four stroke, water-cooled, direct injection diesel engine coupled to an electrical generator. At 75% load the maximum brake thermal efficiency for hydrogen operation at injection timing of TDC and with injection duration of 30°CA is 25.66% compared with 21.59% for diesel. The oxides of nitrogen (NOX) emission are 21.7,g,kWh,1 for hydrogen compared with diesel of 17.9,g,k,Wh,1. Smoke emissions reduced to 1 Bosch smoke number (BSN) in hydrogen compared with diesel of 2.2 BSN. Hydrogen operation in the dual fuel mode with diesel exhibits a better performance and reduction in emissions compared with diesel in the entire load spectra. Copyright © 2009 John Wiley & Sons, Ltd. [source] Energy efficiency improvement strategies for a diesel engine in low-temperature combustionINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 1 2009Ming Zheng Abstract The lowered combustion temperature in diesel engines is capable of reducing nitrogen oxides and soot simultaneously, which can be implemented by the heavy use of exhaust gas recirculation (EGR) or the homogeneous charge compression ignition (HCCI) type of combustion. However, the fuel efficiency of the low-temperature combustion (LTC) cycles is commonly compromised by the high levels of hydrocarbon and carbon monoxide emissions. More seriously, the scheduling of fuel delivery in HCCI engines has lesser leverage on the exact timing of auto-ignition that may even occur before the compression stroke is completed, which may cause excessive efficiency reduction and combustion roughness. New LTC control strategies have been explored experimentally to achieve ultralow emissions under independently controlled EGR, intake boost, exhaust backpressure, and multi-event fuel-injection events. Empirical comparisons have been made between the fuel efficiencies of LTC and conventional diesel cycles. Preliminary adaptive control strategies based on cylinder pressure characteristics have been implemented to enable and stabilize the LTC when heavy EGR is applied. The impact of heat-release phasing, duration, shaping, and splitting on the thermal efficiency has also been analyzed with engine cycle simulations. This research intends to identify the major parameters that affect diesel LTC engine thermal efficiency. Copyright © 2008 John Wiley & Sons, Ltd. [source] Influence of high rates of supplemental cooled EGR on NOx and PM emissions of an automotive HSDI diesel engine using an LP EGR loopINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 15 2008A. Maiboom Abstract Previous experimental studies on diesel engine have demonstrated the potential of exhaust gas recirculation (EGR) as an in-cylinder NOx control method. Although an increase in EGR at constant boost pressure (substitution EGR) is accompanied with an increase in particulate matter (PM) emissions in the conventional diesel high-temperature combustion (HTC), the recirculation of exhaust gases supplementary to air inlet gas (supplemental EGR) by increasing the boost pressure has been suggested as a way to reduce NOx emissions while limiting the negative impact of EGR on PM emissions. In the present work, a low-pressure (LP) EGR loop is implemented on a standard 2.0 l automotive high-speed direct injection (HSDI) turbocharged diesel engine to study the influence of high rates of supplemental cooled EGR on NOx and PM emissions. Contrary to initial high-pressure (HP) EGR loop, the gas flow through the turbine is unchanged while varying the EGR rate. Thus, by closing the variable geometry turbine (VGT) vanes, higher boost pressure can be reached, allowing the use of high rates of supplemental EGR. Furthermore, recirculated exhaust gases are cooled under 50°C and water vapour is condensed and taken off from the recirculated gases. An increase in the boost pressure at a given inlet temperature and dilution ratio (DR) results in most cases an increase in NOx emissions and a decrease in PM emissions. The result of NOx,PM trade-off, while varying the EGR rate at fixed inlet temperature and boost pressure depends on the operating point: it deteriorates at low load conditions, but improves at higher loads. Further improvement can be obtained by increasing the injection pressure. A decrease by approximately 50% of NOx emissions while maintaining PM emission level, and brake specific fuel consumption can be obtained with supplemental cooled EGR owing to an LP EGR loop, compared with the initial engine configuration (HP moderately cooled EGR). Copyright © 2008 John Wiley & Sons, Ltd. [source] Influence of advanced injection timing on the performance and emissions of CI engine fueled with ethanol-blended diesel fuelINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 11 2008Cenk Sayin Abstract Ethanol has been considered as an alternative fuel for diesel engines. On the other hand, injection timing is a major parameter that sensitively affects the engine performance and emissions. Therefore, in this study, the influence of advanced injection timing on the engine performance and exhaust emissions of a single cylinder, naturally aspirated, four stroke, direct injection diesel engine has been experimentally investigated when using ethanol-blended diesel fuel from 0 to 15% with an increment of 5%. The original injection timing of the engine is 27° crank angle (CA) before top dead center (BTDC). The tests were conducted at three different injection timings (27, 30 and 33° CA BTDC) for 30 Nm constant load at 1800 rpm. The experimental results showed that brake-specific energy consumption (BSEC), brake-specific fuel consumption (BSFC), NOx and CO2 emissions increased as brake-thermal efficiency (BTE), smoke, CO and HC emissions decreased with increasing amount of ethanol in the fuel mixture. Comparing the results with those of original injection timing, NOx emissions increased and smoke, HC and CO emissions decreased for all test fuels at the advanced injection timings. For BSEC, BSFC and BTE, advanced injection timings gave negative results for all test conditions. Copyright © 2008 John Wiley & Sons, Ltd. [source] Thermoeconomic modeling of micro-CHP (micro-cooling, heating, and power) for small commercial applicationsINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 9 2008Alan Moran Abstract The increasing demand for electrical power as well as energy for heating and cooling of residences and small commercial buildings is a growing worldwide concern. Micro-cooling, heating, and power (micro-CHP), typically designated as less than 30,kW electric, is decentralized electricity generation coupled with thermally activated components for residential and small commercial applications. The number of combinations of components and parameters in a micro-CHP system is too many to be designed through experimental work alone. Therefore, theoretical models for different micro-CHP components and complete micro-CHP systems are needed to facilitate the design of these systems and to study their performance. This paper presents a model for micro-CHP systems for residential and small commercial applications. Some of the results that can be obtained using the developed model include the cost per month of operation of using micro-CHP versus conventional technologies, the amount of fuel per month required to run micro-CHP systems, the overall efficiency of micro-CHP systems, etc. A case study is used to demonstrate differences in the system performances of micro-CHP systems driven by a natural gas internal combustion engine and a diesel engine. Some of the results show that both systems have similar performance and that system total efficiencies in cooler months of up to 80% could be obtained. Also, modeling results show that there is a limit in fuel price that economically prevents the use of CHP systems, which is $11 MBTU,1 for this specific case. Copyright © 2008 John Wiley & Sons, Ltd. [source] Performance and emission characteristics of turpentine,diesel dual fuel engine and knock suppression using water diluentsINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 10 2007R. Karthikeyan Abstract In the present work, a normal diesel engine was modified to work in a dual fuel (DF) mode with turpentine and diesel as primary and pilot fuels, respectively. The resulting homogeneous mixture was compressed to a temperature below the self-ignition point. The pilot fuel was injected through the standard injection system and initiated the combustion in the primary-fuel air mixture. The primary fuel (turpentine) has supplied most of the heat energy. Usually, in all DF engines, low-cetane fuels are preferred as a primary fuel. Therefore, at higher loads these fuels start knocking and deteriorating in performances. Usually, DF operators suppress the knock by adding more pilot-fuel quantity. But in the present work, a minimum pilot-fuel quantity was maintained constant throughout the test and a required quantity of diluent (water) was added into the combustion at the time of knocking. The advantages of this method of knock suppression are restoration of performance at full load, maintenance of the same pilot quantity through the load range and reduction in the fuel consumption at full load. From the results, it was found that all performance and emission parameters of turpentine, except volumetric efficiency, are better than those of diesel fuel. The emissions like CO, UBHC are higher than those of the diesel baseline (DBL) and around 40,45% reduction of smoke was observed at 100% of full load. The major pollutant of diesel engine, NOx, was found to be equal to that of DBL. From the above experiment, it was proved that approximately 80% replacement of diesel with turpentine is quite possible. Copyright © 2006 John Wiley & Sons, Ltd. [source] Investigation of the temperature oscillations in the cylinder walls of a diesel engine with special reference to the limited cooled caseINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 11 2004C. D. Rakopoulos Abstract This work investigates the interesting phenomenon of the temperature (cyclic) oscillations in the combustion chamber walls of a diesel engine. For this purpose, a comprehensive simulation code of the thermodynamic cycle of the engine is developed taking into account both the closed and the open parts of it. The energy and state equations are applied, with appropriate combustion, gas heat transfer, and mass exchange with the atmosphere sub-models, to yield cylinder pressure, local temperatures and heat release histories as well as various performance parameters of the engine. The model is appropriately coupled to a wall periodic conduction model, which uses the gas temperature variation as boundary condition throughout the engine cycle after being treated by Fourier analysis techniques. It is calibrated against measurements, at various load and speed conditions, from an experimental work carried out on a direct injection (DI), naturally aspirated, four-stroke, diesel engine located at the authors' laboratory, which has been reported in detail previously. After gaining confidence into the predictive capabilities of the model, it is used to investigate the phenomenon further, thus providing insight into many interesting aspects of transient engine heat transfer, as far as the influence that engine wall material properties have on the values of cyclic temperature swings. These swings can take prohibitive values causing high wall thermal fatigue, when materials of specific technological interest such as thermal insulators (ceramics) are used, and may lead to deterioration in engine performance. Copyright © 2004 John Wiley & Sons, Ltd. [source] Application of a chemical heat pump to a cogeneration systemINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 2 2001Yukitaka Kato Abstract The feasibility of a proposed system that combines a magnesium oxide/water chemical heat pump and a diesel engine as a cogeneration system is discussed based on experimental results. The combined system is intended to utilize the waste heat discharge from the engine by means of the chemical heat pump and to level the heat supply load of the engine, allowing enhanced energy utilization. The thermal performance of the chemical heat pump in the cogeneration system is estimated based on the results of a packed-bed experiment. The estimation indicates that by storing the waste heat from the engine during low demand periods, the cogeneration system can produce more than several times the standard thermal output of the diesel engine during peak demand periods. Copyright © 2001 John Wiley & Sons, Ltd. [source] Pulsed dielectric barrier discharge reactor for diesel particulate matter removalAICHE JOURNAL, Issue 8 2004S. Yao Abstract A dielectric barrier discharge (DBD) reactor, driven by a pulsed corona surface discharge (PCSD), was developed for the removal of particulate matter (PM) in an undiluted exhaust gas of a diesel engine. The DBD reactor consisted mainly of alumina (Al2O3) plates and metal meshes covered on the surfaces of Al2O3 plates. The PCSD was carried out with a pulse power supply at atmospheric pressure and the temperature of exhaust gases. The energy efficiency for PM removal was 26.5 ,g/J at maximum and 1 ,g/J with 42% PM removal. The construction of the DBD reactor that promoted PM deposition on Al2O3 surfaces improved energy efficiency. The constants in PM removal model were given. © 2004 American Institute of Chemical Engineers AIChE J, 50: 1901,1907, 2004 [source] Diesel particulate matter and NOx removals using a pulsed corona surface dischargeAICHE JOURNAL, Issue 3 2004S. Yao Abstract A pulsed corona surface discharge (PCSD) system was established for particulate matter (PM) and NOx removals from a diesel engine. The PCSD was carried out with a dielectric barrier discharge (DBD) reactor and a pulse power supply at atmospheric pressure and room temperature. The DBD reactor consisted mainly of an alumina (Al2O3) tube and a stainless steel rod (cathode) inserted in the alumina tube, and an aluminum coil (anode) wound on the outside surface of the Al2O3 tube. Pulse voltage was applied to the outside Al coil and stainless steel rod. PM was removed at a rate of 89% at maximum with 40% NOx removal. Relations of pulse voltage and frequency to PM and NOx removals were investigated. PM was oxidized by NO2 and other kinds of active oxygen species, such as O and O3 from plasma discharges. A surface adsorption/desorption and PM oxidation model of PM removal was established. The kinetic equations and their constants were given. © 2004 American Institute of Chemical Engineers AIChE J, 50:715,721, 2004 [source] Effect of coconut oil-blended fuels on diesel engine wear and lubricationLUBRICATION SCIENCE, Issue 4 2005M. A. Kalam This paper presents the results of an experimental investigation into the wear and lubrication characteristics of a diesel engine using ordinary coconut oil (COIL)-blended fuels. The blended fuels consisted of 10, 20, 30, 40, and 50% COIL with diesel fuel (DF2). Pure DF2 was used for comparison purposes. The engine was operated with 50% throttle setting at a constant speed of 2000 rpm for a period of 100 h with each fuel. The same lubricating oil, equivalent to SAE 40, was used for all fuel systems. A multi-element oil analyser was used to measure wear metals (Fe, Cr, Cu, Al, and Pb), contaminant elements (Si, B, and V), and additive elements (Zn, Ca, P, and Mg) in the used lubricating oil. Fourier transform infrared analysis was performed to measure the degradation products (soot, oxidation, nitration, and sulphation products) in the used lubricant. Karl Fischer (ASTM D 1744) and potentiometric titrations (ASTM D 2896) were used to measure water concentration and total base number (TBN), respectively. An automatic viscometer (ASTM D 445) was used to measure lubricant viscosity. The results show that wear metals and contaminant elements increase with an increasing amount of COIL in DF2. An increasing amount of COIL in the blends reduces additive elements, with the reduction for blends of up to 30% COIL being quite similar to that for DF2. Soot and sulphation decrease with increasing COIL in the blended fuels due to reduced aromatics and sulphur in comparison to DF2. The water concentration increases for blended fuels with more than 30% COIL. The TBN and viscosity changes are found to be almost normal. The engine did not appear to have any starting and combustion problems when operating with the COIL-blended fuels. The lubricating oil analysis data from this study will help in the selection of tribological components and compatible lubricating oils for coconut oil- or biofuel-operated diesel engines. [source] Cover Picture: Geomechanics and Tunnelling 5/2009GEOMECHANICS AND TUNNELLING, Issue 5 2009Article first published online: 24 SEP 200 High breakout force, excellent manoeuvrability and robust construction make Liebherr crawler loaders ideal for tunnel construction work. The current Generation 4 series of crawler loaders consists of three models that effectively cover the service weight range from 11 to 23 tonnes. They are powered by diesel engines with power ratings from 72 to 135 kW (see page 672,673). Hohe Losbrechkräfte, die gute Manövrierfähigkeit und der robuste Aufbau machen Liebherr-Laderaupen zu idealen Arbeitsmaschinen für den Tunnelbau. Die aktuelle Laderaupen-Baureihe der Generation 4 umfasst drei gut abgestimmte Modelle mit Einsatzgewichten zwischen 11 und 23 t und Antriebsleistungen von 72 bis 135 kW (siehe Seite 672,673). [source] Materials Issues Related to Catalysts for Treatment of Diesel ExhaustINTERNATIONAL JOURNAL OF APPLIED CERAMIC TECHNOLOGY, Issue 6 2005Chaitanya K. Narula The driver for lean NOx treatment is the need to meet regulatory standards for diesel engines and gasoline direct injection spark-ignited engines that offer better fuel economy. Efforts over the last decade have been focused toward finding an active lean NOx catalyst that can reduce NOx under oxidizing conditions or strategies such as selective catalytic reduction (SCR), plasma-catalysis, plasma catalyst SCR, and lean NOx traps with varying degrees of success. At present, it appears that SCR with urea and lean NOx traps are the leading contender technologies for commercial deployment. Key issues that remain to be resolved for these two technologies include byproduct formation, dosing control, and durability. In this review, we summarize material-related issues that are unique to each of these technologies, and point out the improvements necessary to facilitate their deployment. [source] The gas-phase oxidation of n -hexadecaneINTERNATIONAL JOURNAL OF CHEMICAL KINETICS, Issue 10 2001R. Fournet Since n -hexadecane or cetane is a reference fuel for the estimation of cetane numbers in diesel engines, a detailed chemical model of its gas-phase oxidation and combustion will help to enhance diesel performance and reduce the emission of pollutants at their outlet. However, until recently the gas-phase reactions of n -hexadecane had not been experimentally studied, prohibiting a validation of oxidation models which could be written. This paper presents a modeling study of the oxidation of n -hexadecane based on experiments performed in a jet-stirred reactor, at temperatures ranging from 1000 to 1250 K, 1-atm pressure, a constant mean residence time of 0.07 s, and high degree of nitrogen dilution (0.03 mol% of fuel) for equivalence ratios equal to 0.5, 1, and 1.5. A detailed kinetic mechanism was automatically generated by using the computer package (EXGAS) developed in Nancy. The long linear chain of this alkane necessitates the use of a detailed secondary mechanism for the consumption of the alkenes formed as a result of primary parent fuel decomposition. This high-temperature mechanism includes 1787 reactions and 265 species, featuring satisfactory agreement for both the consumption of reactants and the formation of products. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 574,586, 2001 [source] Energy efficiency improvement strategies for a diesel engine in low-temperature combustionINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 1 2009Ming Zheng Abstract The lowered combustion temperature in diesel engines is capable of reducing nitrogen oxides and soot simultaneously, which can be implemented by the heavy use of exhaust gas recirculation (EGR) or the homogeneous charge compression ignition (HCCI) type of combustion. However, the fuel efficiency of the low-temperature combustion (LTC) cycles is commonly compromised by the high levels of hydrocarbon and carbon monoxide emissions. More seriously, the scheduling of fuel delivery in HCCI engines has lesser leverage on the exact timing of auto-ignition that may even occur before the compression stroke is completed, which may cause excessive efficiency reduction and combustion roughness. New LTC control strategies have been explored experimentally to achieve ultralow emissions under independently controlled EGR, intake boost, exhaust backpressure, and multi-event fuel-injection events. Empirical comparisons have been made between the fuel efficiencies of LTC and conventional diesel cycles. Preliminary adaptive control strategies based on cylinder pressure characteristics have been implemented to enable and stabilize the LTC when heavy EGR is applied. The impact of heat-release phasing, duration, shaping, and splitting on the thermal efficiency has also been analyzed with engine cycle simulations. This research intends to identify the major parameters that affect diesel LTC engine thermal efficiency. Copyright © 2008 John Wiley & Sons, Ltd. [source] Influence of advanced injection timing on the performance and emissions of CI engine fueled with ethanol-blended diesel fuelINTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 11 2008Cenk Sayin Abstract Ethanol has been considered as an alternative fuel for diesel engines. On the other hand, injection timing is a major parameter that sensitively affects the engine performance and emissions. Therefore, in this study, the influence of advanced injection timing on the engine performance and exhaust emissions of a single cylinder, naturally aspirated, four stroke, direct injection diesel engine has been experimentally investigated when using ethanol-blended diesel fuel from 0 to 15% with an increment of 5%. The original injection timing of the engine is 27° crank angle (CA) before top dead center (BTDC). The tests were conducted at three different injection timings (27, 30 and 33° CA BTDC) for 30 Nm constant load at 1800 rpm. The experimental results showed that brake-specific energy consumption (BSEC), brake-specific fuel consumption (BSFC), NOx and CO2 emissions increased as brake-thermal efficiency (BTE), smoke, CO and HC emissions decreased with increasing amount of ethanol in the fuel mixture. Comparing the results with those of original injection timing, NOx emissions increased and smoke, HC and CO emissions decreased for all test fuels at the advanced injection timings. For BSEC, BSFC and BTE, advanced injection timings gave negative results for all test conditions. Copyright © 2008 John Wiley & Sons, Ltd. [source] Pressure and temperature-based adaptive observer of air charge for turbocharged diesel enginesINTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, Issue 6 2004A. G. Stefanopoulou Abstract In this paper we design an adaptive air charge estimator for turbocharged diesel engines using intake manifold pressure, temperature and engine speed measurements. This adaptive observer scheme does not depend on mass air flow sensors and can be applied to diesel engines with no exhaust gas recirculation (EGR). The performance of the adaptive scheme is shown in simulations to be comparable to conventional air charge estimation schemes if perfect temperature measurements are available. The designed scheme cannot estimate fast transients and its performance deteriorates with temperature sensor lags. Despite all these difficulties, this paper demonstrates that (i) the proposed scheme has better robustness to modelling errors because it provides a closed-loop observer design, and (ii) robust air charge estimation is achievable even without air flow sensors if good (fast) temperature sensors become available. Finally, we provide a rigorous proof and present the implementation challenges as well as the limiting factors of this adaptation scheme and point to hardware and temperature sensor requirements. Copyright © 2004 John Wiley & Sons, Ltd. [source] Effect of coconut oil-blended fuels on diesel engine wear and lubricationLUBRICATION SCIENCE, Issue 4 2005M. A. Kalam This paper presents the results of an experimental investigation into the wear and lubrication characteristics of a diesel engine using ordinary coconut oil (COIL)-blended fuels. The blended fuels consisted of 10, 20, 30, 40, and 50% COIL with diesel fuel (DF2). Pure DF2 was used for comparison purposes. The engine was operated with 50% throttle setting at a constant speed of 2000 rpm for a period of 100 h with each fuel. The same lubricating oil, equivalent to SAE 40, was used for all fuel systems. A multi-element oil analyser was used to measure wear metals (Fe, Cr, Cu, Al, and Pb), contaminant elements (Si, B, and V), and additive elements (Zn, Ca, P, and Mg) in the used lubricating oil. Fourier transform infrared analysis was performed to measure the degradation products (soot, oxidation, nitration, and sulphation products) in the used lubricant. Karl Fischer (ASTM D 1744) and potentiometric titrations (ASTM D 2896) were used to measure water concentration and total base number (TBN), respectively. An automatic viscometer (ASTM D 445) was used to measure lubricant viscosity. The results show that wear metals and contaminant elements increase with an increasing amount of COIL in DF2. An increasing amount of COIL in the blends reduces additive elements, with the reduction for blends of up to 30% COIL being quite similar to that for DF2. Soot and sulphation decrease with increasing COIL in the blended fuels due to reduced aromatics and sulphur in comparison to DF2. The water concentration increases for blended fuels with more than 30% COIL. The TBN and viscosity changes are found to be almost normal. The engine did not appear to have any starting and combustion problems when operating with the COIL-blended fuels. The lubricating oil analysis data from this study will help in the selection of tribological components and compatible lubricating oils for coconut oil- or biofuel-operated diesel engines. [source] Direct use of vegetable oil and animal fat as alternative fuel in internal combustion engineBIOFUELS, BIOPRODUCTS AND BIOREFINING, Issue 2 2008Pinaki Mondal Abstract Gradual depletion of world petroleum reserves and the impact of environmental pollution of increasing exhaust emissions lead to the search for a suitable alternative fuels for diesel engines. The substitution of conventional fuels (gasoline, diesel) by renewable biofuels is considered a potential way to reduce pollution and to support the sustainable development of a country. Direct use of vegetable oil and animal fat is a promising alternative to solve these problems. An exhaustive review of the experiments in this area, carried out by several researchers in last three decades, is presented here. Different problems associated with the direct use of vegetable oil and animal fat and potential solutions from both public and private sectors are discussed. Some engine manufacturers have started to launch full-warranty engines with vegetable oil as fuel. It is expected that the competitive engine market will witness more intense research, resulting in the launch of more vegetable-oil engines with full warranties. The steep rise in food prices in recent years is concerning policy-makers and has raised the old ,food vs fuel' debate. It has been concluded that vegetable oil can probably only substitute small to medium portions of petroleum-based fuel due to future severe land-usage competition from food sector. This calls for intense research initiatives into the production of suitable fuel from non-edible vegetable oil, grown in wasteland. In this regard, genetic engineering may prove to be extremely effective in developing ,designer fuel'. © 2008 Society of Chemical Industry and John Wiley & Sons, Ltd [source] |