Home About us Contact | |||
Dielectric Spectroscopy (dielectric + spectroscopy)
Kinds of Dielectric Spectroscopy Selected AbstractsIsothermal Crystallization Kinetics of Poly(, -caprolactone) with Tetramethyl Polycarbonate and Poly(styrene- co -acrylonitrile) Blends Using Broadband Dielectric SpectroscopyMACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 11 2006Samy A. Madbouly Abstract Summary: Phase behavior and isothermal crystallization kinetics of poly(, -caprolactone) (PCL) blends with tetramethyl polycarbonate (TMPC) and poly(styrene- co -acrylonitrile) with 27.5 wt.-% acrylonitrile content have been investigated using broadband dielectric spectroscopy and differential scanning calorimeter. An LCST-type phase diagram has been observed for PCL/SAN blend while all the different blend compositions of PCL/TMPC were optically clear without any phase separation structure even at high temperatures up to 300,°C. The composition dependence of Tgs for both blends has been well described by the Gordon-Taylor equation. The phase diagram of PCL/SAN was theoretically calculated using the Flory-Huggins equation considering that the interaction parameter is temperature and composition dependent. The equilibrium melting point of PCL depressed in the blend and the magnitude of the depression was found to be composition dependent. The interaction parameters of PCL with TMPC and SAN could not be calculated from the melting point depression based on Nishi-Wang approach. The isothermal crystallization kinetics of PCL and in different blends was also investigated as a function of crystallization temperature using broadband dielectric spectroscopy. For pure PCL the rate of crystallization was found to be crystallization temperature (Tc) dependent, i.e., the higher the Tc, the lower the crystallization rate. The crystallization kinetics of PCL/TMPC blend was much slower than that of PCL/SAN at a constant crystallization temperature. This behavior was attributed to the fact that PCL is highly interacted with TMPC than SAN and consequently the stronger the interaction the higher the depression in the crystallization kinetics. It was also attributed to the different values of Tg of TMPC (191,°C) and SAN (100,°C); therefore, the tendency for crystallization decreases upon increasing the Tg of the amorphous component in the blend. The analysis of the isothermal crystallization kinetics was carried out using the theoretical approach of Avrami. The value of Avrami exponent was almost constant in the pure state and in the blends indicating that blending simply retarded the crystallization rate without affecting the crystallization mechanism. Dielectric constant, ,,, of pure PCL, blends of PCL/TMPC,=,80/20 and PCL/SAN,=,80/20 as a function of crystallization time at 47,°C and 1 kHz. [source] Dielectric Spectroscopy of Aqueous Solutions of KCl and CsCl.CHEMINFORM, Issue 32 2003Ting Chen No abstract is available for this article. [source] Impedance Spectroscopy: A Powerful Tool for Rapid Biomolecular Screening and Cell Culture MonitoringELECTROANALYSIS, Issue 23 2005Isaac Abstract Dielectric spectroscopy or Electrochemical impedance spectroscopy (EIS) is traditionally used in corrosion monitoring, coatings evaluation, batteries, and electrodeposition and semiconductor characterization. However, in recent years, it is gaining widespread application in biotechnology, tissue engineering, and characterization of biological cells, disease diagnosis and cell culture monitoring. This article discusses the principles and implementation of dielectric spectroscopy in these bioanalytical applications. It provides examples of EIS as label-free, mediator-free strategies for rapid screening of biocompatible surfaces, monitoring pathogenic bacteria, as well as the analysis of heterogeneous systems, especially biological cells and tissues. Descriptions are given of the application of nanoparticles to improve the analytical sensitivities in EIS. Specific examples are given of the detection of base pair mismatches in the DNA sequence of Hepatitis B disease, TaySach's disease and Microcystis spp. Others include the EIS detection of viable pathogenic bacteria and the influence of nanomaterials in enhancing biosensor performance. Expanding applications in tissue engineering such as adsorption of proteins onto thiolated hexa(ethylene glycol)-terminated (EG6) self-assembled monolayer (SAM) are discussed. [source] Broadband dielectric spectroscopy on the molecular dynamics in different generations of hyperbranched polyesterJOURNAL OF APPLIED POLYMER SCIENCE, Issue 4 2009Gamal Turky Abstract Dielectric spectroscopy (10,2 Hz to 106 Hz) was employed to investigate the molecular dynamics of hyperbranched polyesters where the number of the generation is systematically varied from 2 to 5. As a first result, the dielectric properties depends strongly on the generation of the hyperbranched polymers. For higher generations (3 to 5) at temperatures below Tg two relaxation processes are observed, a ,-process at lower temperatures and a ,-process at higher ones. The apparent activation energies are around 100 kJ/mol which seems to be too high for truly localized processes. For the Generation 2, only the ,-process is observed. For all investigated polymers the dielectric ,-relaxation could not be observed because of strong conductivity effects. Therefore, the conductivity is systematically analyzed which obeys the peculiarities found to be characteristic for semiconducting disordered materials. Especially, the Barton/Nakajima/Namikawa relationship is found to be valid. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source] Dielectric Response of Aramid Fiber-Reinforced PEEKMACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 16 2002Nina Korbakov Abstract Dielectric spectroscopy was applied for the first time to aramid fiber-reinforced PEEK, wherein the effect of the fiber on the dielectric response was examined for both amorphous and crystalline poly(ether ether ketone) (PEEK) over wide temperature and frequency ranges. Whereas the temperature behavior of the dielectric losses of the materials exhibited the typical , and , processes of PEEK, the specific effect of the fibers in the crystalline PEEK was revealed in shifting the , process to a higher temperature. The unique effect of the fibers was expressed by a significantly higher activation energy and lower dielectric strength for the , relaxation, reflecting a higher constraint level that is imposed by the fiber. It is proposed that this additional constraint is associated with fiber generated transcrystallinity. Scanning electron micrograph of transverse fracture surface of crystallized unidirectional aramid fiber-reinforced PEEK. [source] Molecular Dynamics of Podand Studied by Broadband Dielectric and Nuclear Magnetic Resonance Spectroscopies,,MACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 19-20 2007Bakyt Orozbaev Abstract Nuclear magnetic resonance (NMR) and broadband dielectric spectroscopies (BDS) were used to analyze the molecular dynamics in P10.3H Podand. The temperature studies of NMR line and magnetic spin,lattice relaxation times accompanied by DS investigation enabled us to distinguish three main dynamical processes connected with the motions of the P10.3H Podand chains. In the low-temperature region the magnetic relaxation was associated with fast axial C3 rotation of methyl groups. Moreover, two other independent processes were observed and interpreted as (i) segmental motion of both oxyethylene and ethylene units, and (ii) the overall motion involved in the melting process. [source] Impedance Spectroscopy: A Powerful Tool for Rapid Biomolecular Screening and Cell Culture MonitoringELECTROANALYSIS, Issue 23 2005Isaac Abstract Dielectric spectroscopy or Electrochemical impedance spectroscopy (EIS) is traditionally used in corrosion monitoring, coatings evaluation, batteries, and electrodeposition and semiconductor characterization. However, in recent years, it is gaining widespread application in biotechnology, tissue engineering, and characterization of biological cells, disease diagnosis and cell culture monitoring. This article discusses the principles and implementation of dielectric spectroscopy in these bioanalytical applications. It provides examples of EIS as label-free, mediator-free strategies for rapid screening of biocompatible surfaces, monitoring pathogenic bacteria, as well as the analysis of heterogeneous systems, especially biological cells and tissues. Descriptions are given of the application of nanoparticles to improve the analytical sensitivities in EIS. Specific examples are given of the detection of base pair mismatches in the DNA sequence of Hepatitis B disease, TaySach's disease and Microcystis spp. Others include the EIS detection of viable pathogenic bacteria and the influence of nanomaterials in enhancing biosensor performance. Expanding applications in tissue engineering such as adsorption of proteins onto thiolated hexa(ethylene glycol)-terminated (EG6) self-assembled monolayer (SAM) are discussed. [source] High Breakdown Field Dielectric Elastomer Actuators Using Encapsulated Polyaniline as High Dielectric Constant FillerADVANCED FUNCTIONAL MATERIALS, Issue 19 2010Martin Molberg Abstract A novel method allowing rapid production of reliable composites with increased dielectric constant and high dielectric strength for dielectric elastomer actuators (DEA) is reported. The promising approach using composites of conductive particles and insulating polymers generally suffers from low breakdown fields when applied to DEA devices. The present publication shows how to overcome this deficiency by using conductive polyaniline (PANI) particles encapsulated into an insulating polymer shell prior to dispersion. PANI particles are encapsulated using miniemulsion polymerization (MP) of divinylbenzene (DVB). The encapsulation process is scaled up to approximately 20 g particles per batch. The resulting particles are used as high dielectric constant (,,) fillers. Composites in a polydimethylsiloxane (PDMS) matrix are prepared and the resulting films characterized by dielectric spectroscopy and tensile tests, and evaluated in electromechanical actuators. The composite films show a more than threefold increase in ,,, breakdown field strengths above 50 V ,m,1, and increased strain at break. These novel materials allow tuning the actuation strain or stress output and have potential as materials for energy harvesting. [source] Anhydrous Polymeric Proton Conductors Based on Imidazole Functionalized PolysiloxaneFUEL CELLS, Issue 3-4 2006G. Scharfenberger Abstract Intrinsically proton conducting polymers with imidazole as proton solvent tethered to a polysiloxane backbone via a flexible spacer have been synthesized. Apart from the standard characterization also their thermal properties and transport behavior have been investigated. The materials exhibit proton conductivity as a consequence of self-dissociation of the imidazole moieties and "structure diffusion" of the resulting defects. In particular, no liquid phase such as water or monomeric imidazole is needed for the observed proton conductivities. To study the influence of the tether structure on the transport properties, cyclic oligomers and open chain polymers with different spacer lengths have been synthesized. The materials are thermally stable up to 200,°C and become soft around room temperature. The conductivity exhibits VTF and WLF behavior with maximum conductivities around ,,=,1.5.10,3,S,cm,1 at T,=,160,°C. The activation volume of the conductivity as derived from pressure dependent measurements is found to be unusually high. The lowest activation volumes and the highest conductivities are observed for the materials with the highest segmental mobilities, i.e. the longest spacers. Proton self-diffusion coefficients as obtained from PFG NMR diffusion measurements are significantly higher than expected from the proton conductivities obtained by dielectric spectroscopy. This corresponds to unusually high Haven ratios which have been interpreted by correlated proton transfers allowing for fast proton diffusion while minimizing the separation of ionic charge carriers. [source] Functional Chromium Wheel-Based Hybrid Organic,Inorganic Materials for Dielectric ApplicationsADVANCED FUNCTIONAL MATERIALS, Issue 20 2009Vito Di Noto Abstract The first example of organic,inorganic hybrid materials based on the embedding of a chromium,nickel wheel cluster {[(n-C3H7)2NH2]- [Cr7NiF8(O2C4H5)16]} (Cr7Ni) into poly(methyl methacrylate) (PMMA) and the characterization of the dielectric properties of the obtained material is described. By an optimized copolymerization of the methacrylate-functionalized chromium,nickel wheel with methyl methacrylate in a cluster/monomer 1:200 molar mixture, a homogeneous hybrid material CrNi_MMA200 is obtained. The electrical responses of the non-doped PMMA and of the hybrid material were studied by broadband dielectric spectroscopy (BDS) from 0.01,Hz to 10,MHz and over the temperature range of 5,115,°C. The permittivity profiles reveal two relaxation peaks in the materials, which correspond to the , and , relaxation modes of the PMMA matrix. The position of these modes shifts toward higher frequencies as temperature increases. BDS is a powerful tool revealing the intimate miscibility of the various components of the hybrid material, thus indicating that, on a molecular scale, the material proposed is a homogeneous system. Finally, a value of the dielectric constant of 2.9 at 25,°C and 1,kHz is determined. This value is noticeably lower than the value of 3.2 obtained for pristine PMMA prepared following the same synthesis protocol. Thus, these results classify the hybrid CrNi_MMA200 as an appealing starting material for the development of dielectric polymeric layers for the development of innovative capacitors, transistors, and other microelectronic devices. The vibrational properties of the hybrid materials are investigated by Fourier-transform infrared (FT-IR) and Raman spectroscopy, whereas the thermal behavior is analyzed by thermogravimetric analysis (TGA). Swelling experiments are used to qualitatively evaluate the crosslinking density of the hybrid materials. The integrity of the wheels once embedded in the macromolecular backbone is confirmed by extended X-ray absorption fine structure (EXAFS) and electron spin resonance (EPR) spectroscopic measurements. [source] Silicone,Poly(hexylthiophene) Blends as Elastomers with Enhanced Electromechanical Transduction Properties,ADVANCED FUNCTIONAL MATERIALS, Issue 2 2008F. Carpi Abstract Dielectric elastomers are progressively emerging as one of the best-performing classes of electroactive polymers for electromechanical transduction. They are used for actuation devices driven by the so-called Maxwell stress effect. At present, the need for high-driving electric fields limits the use of these transduction materials in some areas of potential application, especially in the case of biomedical disciplines. A reduction of the driving fields may be achieved with new elastomers offering intrinsically superior electromechanical properties. So far, most attempts in this direction have been focused on the development of composites between elastomer matrixes and high-permittivity ceramic fillers, yielding limited results. In this work, a different approach was adopted for increasing the electromechanical response of a common type of dielectric elastomer. The technique consisted in blending, rather than loading, the elastomer (poly(dimethylsiloxane)) with a highly polarizable conjugated polymer (undoped poly(3-hexylthiophene)). The resulting material was characterised by dielectric spectroscopy, scanning electron microscopy, tensile mechanical analysis, and electromechanical transduction tests. Very low percentages (1,6 wt %) of poly(3-hexylthiophene) yielded both an increase of the relative dielectric permittivity and an unexpected reduction of the tensile elastic modulus. Both these factors synergetically contributed to a remarkable increase of the electromechanical response, which reached a maximum at 1 wt % content of conjugated polymer. Estimations based on a simple linear model were compared with the experimental electromechanical data and a good agreement was found up to 1 wt %. This approach may lead to the development of new types of materials suitable for several types of applications requiring elastomers with improved electromechanical properties. [source] Relation between macroscopic and microscopic dielectric relaxation times in water dynamicsISRAEL JOURNAL OF CHEMISTRY, Issue 3-4 2003Vladimir I. Arkhipov A simplified derivation for the ratio of macroscopic to microscopic relaxation times of polar liquids is based on the Mori-Zwanzig projection-operator technique, with added statistical assumptions. We obtain several useful forms for the lifetime ratio, which we apply to the dynamics of liquid water. Our theoretical single-molecule relaxation times agree with the second Debye relaxation times as measured by frequency-domain dielectric spectroscopy of water and alcohols. From the theory, fast relaxation modes couple to the Debye relaxation time, ,d, through very large water clusters, and their temperature dependence is similar to that of ,d. Slower modes are localized to smaller water clusters and exhibit weaker temperature dependence. This is exemplified by the lifetime ratios measured by time-domain dielectric spectroscopy and optical Kerr effect spectroscopy, respectively. [source] Investigation of Pluronic© F127,Water solutions phase transitions by DSC and dielectric spectroscopyJOURNAL OF APPLIED POLYMER SCIENCE, Issue 2 2009Anna Angela Barba Abstract The water solutions of the block copolymers PEOn -PPOm -PEOn, known as pluronics, show a complex thermal behavior, since they are liquid at low temperature (5°C), and they can give soft gel when heated at body temperature (37°C). These properties are of great interest in biomedical applications. To properly design these applications, a prerequisite is the knowledge of the thermodynamics,how much,and of the kinetics,how fast,with which these transformations take place. In this work, solutions of F127 (the copolymer for which n = 100 and m = 65) were studied by varying the concentration and the temperature and analyzing their behavior when heated under several heating rates. The studies were performed by differential scanning calorimetry (DCS) and dielectric spectroscopy. The investigations carried out under equilibrium conditions allowed us to determine the thermodynamics of the phase transitions, whereas the investigations carried out under varying conditions allowed us to quantify the kinetics of the phase transitions. Empirical models were also proposed to describe both the thermodynamics and the kinetics observed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source] Broadband dielectric spectroscopy on the molecular dynamics in different generations of hyperbranched polyesterJOURNAL OF APPLIED POLYMER SCIENCE, Issue 4 2009Gamal Turky Abstract Dielectric spectroscopy (10,2 Hz to 106 Hz) was employed to investigate the molecular dynamics of hyperbranched polyesters where the number of the generation is systematically varied from 2 to 5. As a first result, the dielectric properties depends strongly on the generation of the hyperbranched polymers. For higher generations (3 to 5) at temperatures below Tg two relaxation processes are observed, a ,-process at lower temperatures and a ,-process at higher ones. The apparent activation energies are around 100 kJ/mol which seems to be too high for truly localized processes. For the Generation 2, only the ,-process is observed. For all investigated polymers the dielectric ,-relaxation could not be observed because of strong conductivity effects. Therefore, the conductivity is systematically analyzed which obeys the peculiarities found to be characteristic for semiconducting disordered materials. Especially, the Barton/Nakajima/Namikawa relationship is found to be valid. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source] Dielectric relaxation and crystallization of ultraviscous melt and glassy states of aspirin, ibuprofen, progesterone, and quinidineJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 5 2007G.P. Johari Abstract Molecular relaxation in ultraviscous melt and glassy states of aspirin, ibuprofen, progesterone, and quinidine has been studied by dielectric spectroscopy. The asymmetric relaxation spectra is characterized by the Kohlrausch distribution parameter of 0.46,±,0.02 for aspirin to 0.67,±,0.02 for progesterone. The dielectric relaxation time varies with the temperature, T, according to the Vogel,Fulcher,Tammann Equation, log10(,0),=,AVFT,+,[BVFT/(T,,,T0)], where AVFT, BVFT, and T0 are empirical constants. The extrapolated ,0 at calorimetric glass-softening temperature is close to the value expected. The equilibrium permittivity, ,0, is lowest for ibuprofen which indicates an antiparallel orientation of dipoles in its liquid's hydrogen-bonded structure. A decrease in ,0 with time shows that ultraviscous aspirin, progesterone, and quinidine begin to cold-crystallize at a relatively lower temperature than ibuprofen. ,0 of the cold-crystallized phases are, 4.7 for aspirin at 290 K, 2.55 for ibuprofen at 287 K, 2.6 for progesterone at 320 K, and 3.2 for quinidine at 375 K. It is argued that hydrogen-bonding, the Kohlrausch parameter, extent of localized motions and the long-range diffusion times all determine the physical and chemical stability of an amorphous pharmaceutical during storage. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 96: 1159,1175, 2007 [source] Low-frequency dielectric spectroscopy as a tool for studying the compatibility between pharmaceutical gels and mucous tissueJOURNAL OF PHARMACEUTICAL SCIENCES, Issue 9 2003Helene HäGerström Abstract This interdisciplinary work demonstrates how low-frequency dielectric spectroscopy, a technique that is frequently used within physics, can be used to assess the possibilities of intimate surface contact between a polymer gel and mucous tissue, which is generally considered to be the first step in the mucoadhesion process. The dielectric responses of five different gels, of freshly excised porcine nasal mucosa and of systems made by combining the two were measured. All spectra were modeled by a Randles electric circuit containing a diffusion element, a barrier resistance in parallel with a capacitance, and a high-frequency resistance. The results were used to create a measure of the compatibility between the gel and the mucus, which we have named the compatibility factor. Thus, the compatibility factor provides us with a measure of the ease with which a charged species passes the interface between a gel and the mucus layer. The compatibility factor is calculated from the high frequency (kHz region) response of the gel, of the mucosa, and of the combined system. The two highest compatibility factors in this study were obtained for gels based on crosslinked poly(acrylic acid) and chitosan, which was in agreement with the results from mucoadhesion measurements that were performed using a tensile strength method. © 2003 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 92:1869,1881, 2003 [source] Structure and Properties of Poly(, -caprolactone) Networks with Modulated Water UptakeMACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 23 2006Jorge L. Escobar Ivirico Abstract Summary: A PCL macromonomer was obtained by the reaction of PCL diol with methacrylic anhydride. The effective incorporation of the polymerizable end groups was assessed by FT-IR and 1H NMR spectroscopy. PCL networks were then prepared by photopolymerization of the PCL macromonomer. Furthermore, the macromonomer was copolymerized with HEA, with the aim of tailoring the hydrophilicity of the system. A set of hydrophilic semicrystalline copolymer networks were obtained. The phase microstructure of the new system and the network architecture was investigated by DSC, IR, DMS, TG, dielectric spectroscopy and water sorption studies. The presence of the hydrophilic units in the system prevented PCL crystallization on cooling; yet there was no effect on the glass transition process. The copolymer networks showed microphase separation and the , relaxation of the HEA units moved to lower temperatures as the amount of PCL in the system increased. Ideal structure, compatible with the experimental results, for the hydrophilized poly(, -caprolactone) networks with modulated water uptake. [source] Isothermal Crystallization Kinetics of Poly(, -caprolactone) with Tetramethyl Polycarbonate and Poly(styrene- co -acrylonitrile) Blends Using Broadband Dielectric SpectroscopyMACROMOLECULAR CHEMISTRY AND PHYSICS, Issue 11 2006Samy A. Madbouly Abstract Summary: Phase behavior and isothermal crystallization kinetics of poly(, -caprolactone) (PCL) blends with tetramethyl polycarbonate (TMPC) and poly(styrene- co -acrylonitrile) with 27.5 wt.-% acrylonitrile content have been investigated using broadband dielectric spectroscopy and differential scanning calorimeter. An LCST-type phase diagram has been observed for PCL/SAN blend while all the different blend compositions of PCL/TMPC were optically clear without any phase separation structure even at high temperatures up to 300,°C. The composition dependence of Tgs for both blends has been well described by the Gordon-Taylor equation. The phase diagram of PCL/SAN was theoretically calculated using the Flory-Huggins equation considering that the interaction parameter is temperature and composition dependent. The equilibrium melting point of PCL depressed in the blend and the magnitude of the depression was found to be composition dependent. The interaction parameters of PCL with TMPC and SAN could not be calculated from the melting point depression based on Nishi-Wang approach. The isothermal crystallization kinetics of PCL and in different blends was also investigated as a function of crystallization temperature using broadband dielectric spectroscopy. For pure PCL the rate of crystallization was found to be crystallization temperature (Tc) dependent, i.e., the higher the Tc, the lower the crystallization rate. The crystallization kinetics of PCL/TMPC blend was much slower than that of PCL/SAN at a constant crystallization temperature. This behavior was attributed to the fact that PCL is highly interacted with TMPC than SAN and consequently the stronger the interaction the higher the depression in the crystallization kinetics. It was also attributed to the different values of Tg of TMPC (191,°C) and SAN (100,°C); therefore, the tendency for crystallization decreases upon increasing the Tg of the amorphous component in the blend. The analysis of the isothermal crystallization kinetics was carried out using the theoretical approach of Avrami. The value of Avrami exponent was almost constant in the pure state and in the blends indicating that blending simply retarded the crystallization rate without affecting the crystallization mechanism. Dielectric constant, ,,, of pure PCL, blends of PCL/TMPC,=,80/20 and PCL/SAN,=,80/20 as a function of crystallization time at 47,°C and 1 kHz. [source] Ternary magnetic semiconductors: recent developments in physics and technologyPHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 5 2009V. Tsurkan Abstract Recent results in physics and technology of ternary magnetic oxide and chalcogenide spinels AB2X4 (A = Fe, Mn, Co, Cd, Zn, Hg; B = Cr, Co, Sc, Al; X = O, S, Se) are reviewed. Using magnetic susceptibility, specific heat, thermal expansion, electron-spin resonance, neutron diffraction, broad-band dielectric spectroscopy, and infrared optical spectroscopy, the spin, charge, orbital, and lattice correlations in these compounds were investigated. The novel magnetic ground states, e.g., spin liquid, spin,orbital liquid, and orbital glass, and in triguing effects, like colossal magnetocapacitive coupling, negative thermal expansion, and spin-driven Jahn,Teller structural transformations were revealed. In considering the origin of these phenomena, the concept of geometrical and bond frustration is explored. It relates the interplay of charge, spin, and orbital degrees of freedom with the inherent topological frustration and competing exchange interactions between the magnetic ions. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Comparison of constitutive wheat bran tissues by dielectric spectroscopy and effect of their moisture contentPOLYMER INTERNATIONAL, Issue 12 2004Carole Antoine Abstract The dielectric properties of hand-isolated wheat bran tissues (outer pericarp, intermediate and aleurone layers) were studied at 58 % and 75 % RH between 0.001 and 1E10 + 6 Hz. The measured values of the real and imaginary parts of bran tissue capacitances were modelled using an electrical circuit consisting of a constant phase angle component (CPA), a Warburg impedance and a parallel capacitance. The theoretical data from the equivalent circuit are in close agreement with the experimental values and allowed us to characterize the dielectric properties of the tissue. These results showed that the aleurone layer was the most capacitive tissue even though the outer pericarp exhibited the highest resistivity. Finally, tissue moisture contents were deduced from isotherm sorption measurements for a range of RH, and the water effect on their dielectric properties was analyzed. Copyright © 2004 Society of Chemical Industry [source] |