Dielectric Relaxation Spectroscopy (dielectric + relaxation_spectroscopy)

Distribution by Scientific Domains


Selected Abstracts


Relaxation map of PETg-montmorillonite composites: Nanofiller concentration influence on , and , relaxation processes,

POLYMER ENGINEERING & SCIENCE, Issue 5 2009
H. Couderc
Samples of polyethylene-1.4-cyclohexylenedimethylene terephthalate glycol (PETg) with different filler contents were prepared by a master batch process. The intercalated dispersion state of montmorillonite (MMT) was characterized using X-Ray Diffraction. Two different sample series are put in evidence with different basal distances (3.31 and 3.48 nm). The influence of nanofiller on , and , relaxations was studied by Dielectric Relaxation Spectroscopy and Differential Scanning Calorimetry. The use of these two techniques allowed us to determine accurately the fragility index m at the glass transition temperature Tg. For Tg, m, the Kauzmann temperature TK, and the relaxation time at Tg ,(Tg), we showed a decrease of the values more important for 3.48 nm basal distance than for 3.31 nm. The , did not seem affected in its apparent activation energy Ea by the MMT addition. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers [source]


Polymer dynamics in rubbery epoxy networks/polyhedral oligomeric silsesquioxanes nanocomposites

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 4 2009
Th. Kourkoutsaki
Abstract Dielectric techniques, including thermally stimulated depolarization currents (TSDC, ,150 to 30°C) and, mainly, broadband dielectric relaxation spectroscopy (DRS, 10,2 , 106 Hz, ,150 to 150°C) were employed, next to differential scanning calorimetry (DSC), to investigate molecular dynamics in rubbery epoxy networks prepared from diglycidyl ether of Bisphenol A (DGEBA) and poly(oxypropylene)diamine (Jeffamine D2000, molecular mass 2000) and modified with polyhedral oligomeric silsesquioxanes (POSS) units covalently bound to the chains as dangling blocks. Four relaxations were detected and analyzed: in the order of increasing temperature at constant frequency, two local, secondary , and , relaxations in the glassy state, the segmental , relaxation associated with the glass transition and the normal mode relaxation, related with the presence of a dipole moment component along the Jeffamine chain contour. Measurements on pure Jeffamine D2000 helped to clarify the molecular origin of the relaxations observed. A significant reduction of the magnitude and a slight acceleration of the , and of the normal mode relaxations were observed in the modified networks. These results suggest that a fraction of polymer is immobilized, probably at interfaces with POSS, due to constraints imposed by the covalently bound rigid nanoparticles, whereas the rest exhibits a slightly faster dynamics due to increaseof free volume resulting from loosened molecular packing of the chains (plasticization by the bulky POSS units). The increase of free volume is rationalized by density measurements. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source]


Local dynamics in epoxy coatings containing iron oxide nanoparticles by dielectric relaxation spectroscopy

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2008
G. Kortaberria
Abstract Nanocomposites of photocurable epoxy resin and epoxy-modified iron oxide magnetic nanoparticles were analyzed by dielectric relaxation spectroscopy to study the local dynamics at temperatures well below the glass-transition temperature. Two secondary processes were detected, , and , processes, but the second one was just detected at lower temperatures in the high-frequency part of the spectra and moved out of the frequency range at higher temperatures. Data were fitted to the Havriliak,Negami and Arrhenius models, and the obtained parameters were analyzed. Relaxation times of the , secondary relaxation did not change with the nanoparticle content, but the relaxation strength increased. The increase could not be explained when we took into account the molecular origin of the relaxation. The presence of ferromagnetic nanoparticles enhanced the internal field and increased the relaxation strengths. Transmission electron microscopy images showed that the nanoparticles were well dispersed in the matrix, without magnetic agglomerates. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008 [source]


Prediction of onset of crystallization in amorphous pharmaceutical systems: Phenobarbital, nifedipine/PVP, and phenobarbital/PVP

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 9 2010
Vincent Caron
Abstract The aim of this work is to determine if a stability testing protocol based on the correlations between crystallization onset and relaxation time above the glass transition temperature (Tg) can be used to predict the crystallization onsets in amorphous pharmaceutical systems well below their Tg. This procedure assumes that the coupling between crystallization onset and molecular mobility is the same above and below Tg. The stability testing protocol has been applied to phenobarbital, phenobarbital/polyvinylpyrrolidone (PVP) (95/5, w/w), and nifedipine/PVP (95/5, w/w). Crystallization onsets have been detected by polarized light microscopy examination of amorphous films; molecular mobility has been determined by dielectric relaxation spectroscopy above Tg and by both isothermal calorimetry and modulated differential scanning calorimetry below Tg. We find that small amounts of PVP significantly retard re-crystallization. This dramatic effect of PVP is not related to mobility, so this approach applies, at best, to extrapolation of high temperature data on a given formulation to low temperatures. Variation in molecular mobility at these concentrations of PVP is not the dominant factor in determining variation in propensity for re-crystallization from glassy systems; we suggest surface interactions between PVP and nuclei and/or small crystals slowing growth control variation in crystallization kinetics between formulations. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 99:3887,3900, 2010 [source]


Influence of the cross-linking density on the main dielectric relaxation of poly(methyl acrylate) networks

POLYMER ENGINEERING & SCIENCE, Issue 10 2005
J.M. Meseguer Dueñas
A series of polymer networks of varying cross-linking density was prepared by copolymerization of methyl acrylate and ethyleneglycol dimethacrylate. The aim of this work is to study the influence of cross-linking on the conformational mobility of the polymer chains using dielectric relaxation spectroscopy (DRS) in the temperature range of the main dielectric relaxation. As expected, the temperature range in which glass transition takes place became wider with increasing crosslinking density. DRS results were analyzed using the Havriliak-Negami equation. Master Cole-Cole arcs could be drawn for all the networks. The arcs become more symmetric as cross-linking density increases, as a consequence of the different effect of cross-links on large and small scale mobility. The conformational mobility that produces the main relaxation is drastically reduced when the cross-linking density increases what reduces the relaxation strength, but it also gives a qualitative change of behavior, as shown by the temperature dependence of the relaxation strength. In the loosely cross-linked networks the relaxation strength decreases monotonously as temperature increases, as in the main dielectric relaxation of linear polymers. Nevertheless, in highly cross-linked networks the curve of relaxation strength against temperature presents a maximum. POLYM. ENG. SCI., 45:1336,1342, 2005. © 2005 Society of Plastics Engineers [source]


Polycarbonate/SiC nanocomposites,influence of nanoparticle dispersion on molecular mobility and gas transport,

POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 2-3 2005
Martin Böhning
Abstract Plasma synthesized silicon carbide (SiC) nanoparticles were dispersed in dichloromethane/poly(bisphenol-A-carbonate) (PC) solutions by high power ultrasonification. Samples were then prepared by film casting under well adapted preparation conditions. The influence of the SiC nanoparticles on the molecular mobility of the PC is studied by dielectric relaxation spectroscopy. No effect on the cooperative segmental mobility (glass transition) was detected. But the relaxation region corresponding to localized fluctuations is strongly broadened and the activation energy is reduced with increasing nanoparticle concentration. The most significant change was observed in the relaxation region between , - and , -process. The gas transport properties of these nanocomposite films are characterized in terms of permeability, diffusivity and solubility. Results can be interpreted based on an altered local free volume distribution and a change of molecular mobility of the polymer matrix near the nanoparticle surface which is in agreement with the dielectric results. Concentration dependent CO2 permeation experiments reveal a significant reduction of plasticization effects in the nanocomposites compared to the pure PC. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Nature of water molecules in hydrogels based on a liquid crystalline cellulose derivative

POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 11-12 2003
P. Wojciechowski
Abstract The status and nature of water molecules in hydrogels with a liquid crystalline organization of the polymer network based on a biopolymer were investigated. Liquid crystalline (LC) hydrogels were obtained in situ by the photopolymerization of acrylic acid into the lyotropic liquid crystalline phase of (2-hydroxypropyl)cellulose in a solvent mixture of water and acrylic acid. The photopolymerization of acrylic acid in the lyotropic liquid crystalline phase at room temperature gives a hydrogel in which liquid crystalline order and water are retained. The liquid crystalline hydrogel contains water, which originates from the composition of the lyotropic liquid crystalline phase, and may also contain water after immersion in liquid water. The water molecule characteristics were examined by means of differential scanning calorimetry, dielectric relaxation spectroscopy, and differential scanning calorimetry coupled with thermo-optical measurements. The swelling data were obtained by using a weighing method. The investigations reveal the different nature of the two above-mentioned water types. For the water from the composition of the lyotropic liquid crystalline phase, the phase transitions,typical for the bulk water,were not observed, in contract to the water after swelling of the liquid crystalline hydrogel in the liquid water. The results of the measurements suggest that water, which comes from the composition of the lyotropic liquid crystalline phase, forms,together with a polymer network,a microstructure, stabilized by this water. The water, after swelling of the LC hydrogel in the liquid water, is separated in the pores of the hydrogel and exhibits the phase transitions of the bulk water. Copyright © 2003 John Wiley & Sons, Ltd. [source]