Home About us Contact | |||
Diastolic Cardiac Function (diastolic + cardiac_function)
Selected AbstractsINHIBITION OF BRAIN RENIN,ANGIOTENSIN SYSTEM IMPROVES DIASTOLIC CARDIAC FUNCTION FOLLOWING MYOCARDIAL INFARCTION IN RATSCLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 8 2009IG Araujo SUMMARY 1Recently, we demonstrated that oral captopril treatment improved diastolic function and attenuated cardiac remodelling after myocardial infarction (MI) in rats. Considering the feasible role of the brain renin,angiotensin system (RAS) in heart failure, in the present study we investigated the role of the captopril injected intracerebroventricularly (i.c.v.) on the progression of cardiac dysfunction. 2Male Wistar rats underwent experimental MI or sham operation. Infarcted animals received daily i.c.v. injections of captopril (approximately 200 mg/kg; MI + Cap) or saline (MI) from 11 to 18 days after infarction. Electro- and echocardiogram assessments were performed before and after i.c.v. treatment (10 and 18 days after MI, respectively). Water and hypertonic saline ingestion were determined daily between 12 and 16 days after MI. 3Electrocardiograms from the MI and MI + Cap groups showed signs that resembled large MI before and after i.c.v. treatment. However, despite similar systolic dysfunction observed in both groups, only captopril-treated rats exhibited reduced left ventricular (LV) dilatation and improved LV filling, as assessed by echocardiograms, and low levels of water ingestion compared with the saline-treated control group. 4The results of the present study suggest that the brain RAS may participate in the development of cardiac dysfunction induced by ischaemia and that inhibition of the brain RAS may provide a new strategy for the prevention of diastolic dysfunction. [source] Humoral and cardiac effects of TIPS in cirrhotic patients with different "effective" blood volumeHEPATOLOGY, Issue 6 2003Francesco Salerno M.D. The aim of this study was to evaluate the cardiac effects of transjugular intrahepatic portosystemic shunts (TIPS) in cirrhotic patients with different effective blood volume. Two-dimensional echocardiography was performed before and 7 and 28 days after TIPS insertion in 7 cirrhotic patients with PRA <4 ng/mL/h (group A, normal effective blood volume) and 15 with PRA >4 ng/mL/h (group B, reduced effective blood volume). Before TIPS, most cirrhotic patients showed diastolic dysfunction as indicated by reduced early maximal ventricular filling velocity (E)/late filling velocity (A) ratio. Patients of group B differed from patients of group A because of smaller left ventricular volumes and stroke volume, indicating central underfilling. After TIPS insertion, portal decompression was associated with a significant increase of cardiac output (CO) and a decrease of peripheral resistances. The most important changes were recorded in patients of group B, who showed a significant increase of both the end-diastolic left ventricular volumes and the E/A ratio and a significant decrease of PRA. In conclusion, these results show that the hemodynamic effects of TIPS differ according to the pre-TIPS effective blood volume. Furthermore, TIPS improves the diastolic cardiac function of cirrhotic patients with effective hypovolemia. This result is likely due to a TIPS-related improvement of the fullness of central blood volume. [source] Cardiopulmonary responses of asthmatic children to exercise: Analysis of systolic and diastolic cardiac functionPEDIATRIC PULMONOLOGY, Issue 3 2007Bulent Alioglu MD Abstract The aim of this study was to evaluate aerobic exercise capacity, cardiac features and function in a group of asthmatic children who underwent medical treatment. Dynamic exercise testing was done to evaluate aerobic exercise capacity. Echocardiography was performed to identify the effects that asthma-induced pulmonary changes have on respiratory and cardiac function in these patients. The study involved 20 asthmatic children (aged 7,16 years) who were followed at our hospital and 20 age- and sex-matched, healthy control subjects. Sixteen of the asthma cases were moderate and four were severe. All 40 subjects underwent similar series of assessments: multiple modes of echocardiography, treadmill stress testing, pulmonary function testing. The means for forced expiratory volume in 1 sec, forced expiratory flow 25,75%, maximal voluntary ventilation and inspiratory capacity were all significantly higher in the control group. The patient group had significantly lower mean maximal oxygen uptake and mean endurance time than the controls but there were no significant differences between the groups with respect to respiratory exchange ratio or the ventilatory threshold. The control group means for ejection fraction, fractional shortening, left ventricular mass, and left ventricular mass index were significantly higher than the corresponding patient group results. Children with moderate or severe asthma have lower aerobic capacity than healthy children of the same age. The data suggest that most of these children have normal diastolic cardiac function, but exhibit impaired systolic function and have lower LVM than healthy peers of the same age. Pediatr Pulmonol. 2007; 42:283,289. © 2007 Wiley-Liss, Inc. [source] Cardiac diastolic dysfunction in renal-transplant recipients is associated with increased circulating AdrenomedullinCLINICAL TRANSPLANTATION, Issue 3 2006Bernard Geny Abstract:, Background:, Renal transplantation is an excellent therapeutic alternative for end-stage renal diseases. Nevertheless, the cardiac function is often impaired in renal-transplant patients (RTR) and importantly determines their prognosis. Adrenomedullin (ADM), a peptide involved in cardiovascular homeostasis, is believed to protect both cardiac and renal functions , by increasing local blood flows, attenuating the progression of vascular damage and remodelling and by reducing glomerular injury , and might be involved in renal-transplantation physiopathology. This work was performed to investigate whether an increase in circulating ADM might be related to RTR cardiac function. Methods:, Twenty-nine subjects, 19 RTR and 10 healthy subjects, participated in the study. After 15 min rest in supine position, heart rate and systemic blood pressure were measured together with cyclosporine through levels, creatinine and ADM. Systolic and diastolic cardiac functions were assessed, using Doppler echocardiography. Results:, Subjects were similar concerning age, weight, heart rate and blood pressure. Creatinine and ADM (53.8±6.9 vs. 27.2±4.1 pmol/L, p = 0.02) were significantly increased in RTR (73±10 months after transplantation). Cardiac systolic function was normal, but a reduced mitral E:A ratio was observed in RTR (0.90±0.06 vs. 1.38±0.10, p<0.001), reflecting their impaired left ventricular relaxation. Such a ratio was negatively correlated with ADM (r = ,0.55, p = 0.002). Conclusions:, RTR present with an increased ADM is likely related to cardiac diastolic dysfunction. In view of its protective effect on the cardiovascular system, these data support further studies to better define the role and the therapeutic potential of ADM after renal transplantation. [source] |