Diverse Sequences (diverse + sequence)

Distribution by Scientific Domains


Selected Abstracts


Epitope mapping of a monoclonal antibody against human thrombin by H/D-exchange mass spectrometry reveals selection of a diverse sequence in a highly conserved protein

PROTEIN SCIENCE, Issue 6 2002
Abel Baerga-Ortiz
Abstract The epitope of a monoclonal antibody raised against human thrombin has been determined by hydrogen/deuterium exchange coupled to MALDI mass spectrometry. The antibody epitope was identified as the surface of thrombin that retained deuterium in the presence of the monoclonal antibody compared to control experiments in its absence. Covalent attachment of the antibody to protein G beads and efficient elution of the antigen after deuterium exchange afforded the analysis of all possible epitopes in a single MALDI mass spectrum. The epitope, which was discontinuous, consisting of two peptides close to anion-binding exosite I, was readily identified. The epitope overlapped with, but was not identical to, the thrombomodulin binding site, consistent with inhibition studies. The antibody bound specifically to human thrombin and not to murine or bovine thrombin, although these proteins share 86% identity with the human protein. Interestingly, the epitope turned out to be the more structured of two surface regions in which higher sequence variation between the three species is seen. [source]


Volcanic calderas delineate biogeographic provinces among Yellowstone thermophiles

ENVIRONMENTAL MICROBIOLOGY, Issue 7 2008
Cristina Takacs-Vesbach
Summary It has been suggested that the distribution of microorganisms should be cosmopolitan because of their enormous capacity for dispersal. However, recent studies have revealed that geographically isolated microbial populations do exist. Geographic distance as a barrier to dispersal is most often invoked to explain these distributions. Here we show that unique and diverse sequences of the bacterial genus Sulfurihydrogenibium exist in Yellowstone thermal springs, indicating that these sites are geographically isolated. Although there was no correlation with geographic distance or the associated geochemistry of the springs, there was a strong historical signal. We found that the Yellowstone calderas, remnants of prehistoric volcanic eruptions, delineate biogeographical provinces for the Sulfurihydrogenibium within Yellowstone (,2: 9.7, P = 0.002). The pattern of distribution that we have detected suggests that major geological events in the past 2 million years explain more of the variation in sequence diversity in this system than do contemporary factors such as habitat or geographic distance. These findings highlight the importance of historical legacies in determining contemporary microbial distributions and suggest that the same factors that determine the biogeography of macroorganisms are also evident among bacteria. [source]


Analysis of the distribution and diversity in recent Hawaiian volcanic deposits of a putative carbon monoxide dehydrogenase large subunit gene

ENVIRONMENTAL MICROBIOLOGY, Issue 9 2005
Kari E. Dunfield
Summary A putative carbon monoxide dehydrogenase large subunit gene (BMS putative coxL) was amplified from genomic DNA extracts of four recent (42,300 year old) Hawaiian volcanic deposits by polymerase chain reaction (PCR). Sequence databases derived from clone libraries constructed using PCR products were analysed phylogenetically and statistically. These analyses indicated that each of the deposits supported distinct BMS putative coxL gene assemblages. Statistical analyses also showed that the youngest deposit (42 years old) contained the least diverse sequences (P < 0.05), but that diversity did not vary significantly among three older deposits with ages from about 108,300 years. Although diversity indices did not vary among the older deposits, mismatch analyses suggested population structures increased in complexity with increasing deposit age. At each of the sites, most of the clone sequences appeared to originate from Proteobacteria not currently represented in culture or recognized as CO oxidizers. [source]


Broadening the mission of an RNA enzyme

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2009
Michael C. Marvin
Abstract The "RNA World" hypothesis suggests that life developed from RNA enzymes termed ribozymes, which carry out reactions without assistance from proteins. Ribonuclease (RNase) P is one ribozyme that appears to have adapted these origins to modern cellular life by adding protein to the RNA core in order to broaden the potential functions. This RNA-protein complex plays diverse roles in processing RNA, but its best-understood reaction is pre-tRNA maturation, resulting in mature 5' ends of tRNAs. The core catalytic activity resides in the RNA subunit of almost all RNase P enzymes but broader substrate tolerance is required for recognizing not only the diverse sequences of tRNAs, but also additional cellular RNA substrates. This broader substrate tolerance is provided by the addition of protein to the RNA core and allows RNase P to selectively recognize different RNAs, and possibly ribonucleoprotein (RNP) substrates. Thus, increased protein content correlated with evolution from bacteria to eukaryotes has further enhanced substrate potential enabling the enzyme to function in a complex cellular environment. J. Cell. Biochem. 108: 1244,1251, 2009. © 2009 Wiley-Liss, Inc. [source]