Diverse Molecules (diverse + molecule)

Distribution by Scientific Domains


Selected Abstracts


Combined 4D-fingerprint and clustering based membrane-interaction QSAR analyses for constructing consensus Caco-2 cell permeation virtual screens

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 1 2008
Osvaldo A. Santos-Filho
Abstract A set of 30 structurally diverse molecules, for which Caco-2 cell permeation coefficients were determined, formed the training set for construction of Caco-2 cell permeation models based upon membrane-interaction (MI) QSAR analysis and a new QSAR method called 4D-fingerprint QSAR analysis. The descriptor terms of the 4D-fingerprints equation are molecular similarity eigenvalues, and this set of descriptors is being evaluated as a potential "universal" QSAR descriptor set. The 4D-fingerprint model suggests that Caco-2 cell permeation is governed by the spatial distribution of hydrogen bonding and nonpolar groups over the molecular shape of a molecule. Moreover, a complementary resampling of the original Caco-2 cell permeation training set, followed by the construction of several "clustered" MI-QSAR models, led to a consensus model consistent in interpretation with the 4D-fingerprint model. © 2007 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 97:566,583, 2008 [source]


Characterization of HasB, a Serratia marcescens TonB-like protein specifically involved in the haemophore-dependent haem acquisition system

MOLECULAR MICROBIOLOGY, Issue 4 2001
Annick Paquelin
In Gram-negative bacteria, the TonB,ExbB,ExbD inner membrane multiprotein complex is required for active transport of diverse molecules through the outer membrane. We present evidence that Serratia marcescens, like several other Gram-negative bacteria, has two TonB proteins: the previously characterized TonBSM, and also HasB, a newly identified component of the has operon that encodes a haemophore-dependent haem acquisition system. This system involves a soluble extracellular protein (the HasA haemophore) that acquires free or haemoprotein-bound haem and presents it to a specific outer membrane haemophore receptor (HasR). TonBSM and HasB are significantly similar and can replace each other for haem acquisition. However, TonBSM, but not HasB, mediates iron acquisition from iron sources other than haem and haemoproteins, showing that HasB and TonBSM only display partial redundancy. The reconstitution in Escherichia coli of the S. marcescens Has system demonstrated that haem uptake is dependent on the E. coli ExbB, ExbD and TonB proteins and that HasB is non-functional in E. coli. Nevertheless, a mutation in the HasB transmembrane anchor domain allows it to replace TonBEC for haem acquisition. As the change affects a domain involved in specific TonBEC,ExbBEC interactions, HasB may be unable to interact with ExbBEC, and the HasB mutation may allow this interaction. In E. coli, the HasB mutant protein was functional for haem uptake but could not complement the other TonBEC -dependent functions, such as iron siderophore acquisition, and phage DNA and colicin uptake. Our findings support the emerging hypothesis that TonB homologues are widespread in bacteria, where they may have specific functions in receptor,ligand uptake systems. [source]


Multiple diverse ligands binding at a single protein site: A matter of pre-existing populations

PROTEIN SCIENCE, Issue 2 2002
Buyong Ma
Abstract Here, we comment on the steadily increasing body of data showing that proteins with specificity actually bind ligands of diverse shapes, sizes, and composition. Such a phenomenon is not surprising when one considers that binding is a dynamic process with populations in equilibrium and that the shape of the binding site is strongly influenced by the molecular partner. It derives implicitly from the concept of populations. All proteins, specific and nonspecific, exist in ensembles of substates. If the library of ligands in solution is large enough, favorably matching ligands with altered shapes and sizes can be expected to bind, with a redistribution of the protein populations. Point mutations at spatially distant sites may exert large conformational rearrangements and hinge effects, consistent with mutations away from the binding site leading to population shifts and (cross-)drug resistance. A similar effect is observed in protein superfamilies, in which different sequences with similar topologies display similar large-scale dynamic motions. The hinges are frequently at analogous sites, yet with different substrate specificity. Similar topologies yield similar conformational isomers, although with different distributions of population times, owing to the change in the conditions, that is, the change in the sequences. In turn, different distributions relate to binding of different sizes and shapes. Hence, the binding site shape and size are defined by the ligand. They are not independent entities of fixed proportions and cannot be analyzed independently of the binding partner. Such a proposition derives from viewing proteins as dynamic distributions, presenting to the incoming ligands a range of binding site shapes. It illustrates how presumably specific binding molecules can bind multiple ligands. In terms of drug design, the ability of a single receptor to recognize many dissimilar ligands shows the need to consider more diverse molecules. It provides a rationale for higher affinity inhibitors that are not derived from substrates at their transition states and indicates flexible docking schemes. [source]


ATP-Noncompetitive Inhibitors of CDK,Cyclin Complexes

CHEMMEDCHEM, Issue 1 2009
Mar Orzáez Dr.
Abstract Progression through the cell division cycle is controlled by a family of cyclin-dependent kinases (CDKs), the activity of which depends on their binding to regulatory partners (cyclins A,H). Deregulation of the activity of CDKs has been associated with the development of infectious, neurodegenerative, and proliferative diseases such as Alzheimer's, Parkinson's, or cancer. Most cancer cells contain mutations in the pathways that control the activity of CDKs. This observation led this kinase family to become a central target for the development of new drugs for cancer therapy. A range of structurally diverse molecules has been shown to inhibit the activity of CDKs through their activity as ATP antagonists. Nevertheless, the ATP binding sites on CDKs are highly conserved, limiting the kinase specificity of these inhibitors. Various genetic and crystallographic approaches have provided essential information about the mechanism of formation and activation of CDK,cyclin complexes, providing new ways to implement novel research strategies toward the discovery of new, more effective and selective drugs. Herein we review the progress made in the development of ATP-noncompetitive CDK,cyclin inhibitors. [source]


Clinical and molecular aspects of aniridia

CLINICAL GENETICS, Issue 5 2010
H Kokotas
Kokotas H, Petersen MB. Clinical and molecular aspects of aniridia. Aniridia is a severe, congenital ocular malformation inherited in an autosomal-dominant fashion with high penetrance and variable expression. Eye morphogenesis in humans involves a molecular genetic cascade in which a number of developmental genes interact in a highly organized process during the embryonic period to produce functional ocular structures. Among these genes, paired box gene 6 (PAX6) has an essential role as it encodes a phylogenetically conserved transcription factor almost universally employed for eye formation in animals with bilateral symmetry, despite widely different embryological origins. To direct eye development, PAX6 regulates the tissue-specific expression of diverse molecules, hormones, and structural proteins. In humans, PAX6 is located in chromosome 11p13, and its mutations lead to a variety of hereditary ocular malformations of the anterior and posterior segment, among which aniridia and most probably foveal hypoplasia are the major signs. Aniridia occurs due to decreased dosage of the PAX6 gene and exists in both sporadic and familial forms. The mutations are scattered throughout the gene and the vast majority of those reported so far are nonsense mutations, frameshift mutations, or splicing errors that are predicted to cause pre-mature truncation of the PAX6 protein, causing haploinsufficiency. Here we review the data regarding the mechanisms and the mutations that relate to aniridia. [source]