Home About us Contact | |||
Divalent Metals (divalent + metal)
Terms modified by Divalent Metals Selected AbstractsSEQUENCE ANALYSIS AND TRANSCRIPTIONAL REGULATION OF IRON ACQUISITION GENES IN TWO MARINE DIATOMS,JOURNAL OF PHYCOLOGY, Issue 4 2007Adam B. Kustka The centric diatom Thalassiosira pseudonana Hasle et Heimdal and the pennate diatom Phaeodactylum tricornutum Bohlin possess genes with translated sequences homologous to high-affinity ferric reductases present in model organisms. Thalassiosira pseudonana also possesses putative genes for membrane-bound ferroxidase (TpFET3) and two highly similar iron (Fe) permeases (TpFTR1 and TpFTR2), as well as a divalent metal (M2+) transporter belonging to the NRAMP superfamily (TpNRAMP). In baker's yeast, the ferroxidase,permease complex transports Fe(II) produced by reductases. We investigated transcript abundances of these genes as a function of Fe quota (QFe). Ferric reductase transcripts are abundant in both species (15%,60% of actin) under low QFe and are down-regulated by 5- to 35-fold at high QFe, suggesting Fe(III) reduction is a common, inducible strategy for Fe acquisition in marine diatoms. Permease transcript abundance was regulated by Fe status in T. pseudonana, but we did not detect significant differences in expression of the copper (Cu)-containing ferroxidase. TpNRAMP showed the most dramatic regulation by QFe, suggesting a role in cellular Fe transport in either cell-surface uptake or vacuolar mobilization. We could not identify ferroxidase or permease homologues in the P. tricornutum genome. The up-regulation of genes in T. pseudonana that appear to be missing altogether from P. tricornutum as well as the finding that P. tricornutum seems to have an efficient system to acquire Fe,, suggest that diverse (and uncharacterized) Fe-uptake systems may be at play within diatom assemblages. Different uptake systems among diatoms may provide a mechanistic basis for niche differentiation with respect to Fe availability in the ocean. [source] Evaluation of sorbent amendments for in situ remediation of metal-contaminated sedimentsENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2010Seokjoon Kwon Abstract The present study evaluated sorbent amendments for in situ remediation of sediments contaminated with two divalent metals. A literature review screening was performed to identify low-cost natural mineral-based metal sorbents and high-performance commercial sorbents that were carried forward into laboratory experiments. Aqueous phase metal sorptivity of the selected sorbents was evaluated because dissolved metals in sediment porewater constitute an important route of exposure to benthic organisms. Based on pH-edge sorption test results, natural sorbents were eliminated due to inferior performance. The potential as in situ sediment amendment was explored by comparing the sorption properties of the engineered amendments in freshwater and saltwater (10 PPT salinity estuarine water) matrices. Self-assembled monolayers on mesoporous supports with thiols (Thiol-SAMMSÔ) and a titanosilicate mineral (ATSÔ) demonstrated the highest sorption capacity for cadmium (Cd) and lead (Pb), respectively. Sequential extraction tests conducted after mixing engineered sorbents with contaminated sediment demonstrated transfer of metal contaminants from a weakly bound state to a more strongly bound state. Biouptake of Cd in a freshwater oligochaete was reduced by 98% after 5-d contact of sediment with 4% Thiol-SAMMS and sorbed Cd was not bioavailable. While treatment with ATS reduced the small easily extractable portion of Pb in the sediment, the change in biouptake of Pb was not significant because most of the native lead was strongly bound. The selected sorbents added to sediments at a dose of 5% were mostly nontoxic to a range of sensitive freshwater and estuarine benthic organisms. Metal sorbent amendments in conjunction with activated carbon have the potential to simultaneously reduce metal and hydrophobic contaminant bioavailability in sediments. Environ. Toxicol. Chem. 2010;29:1883,1892. © 2010 SETAC [source] Characterization of phycoviolobilin phycoerythrocyanin-,84-cystein-lyase-(isomerizing) from Mastigocladus laminosusFEBS JOURNAL, Issue 18 2002Kai-Hong Zhao Cofactor requirements and enzyme kinetics have been studied of the novel, dual-action enzyme, the isomerizing phycoviolobilin phycoerythrocyanin-,84-cystein-lyase(PVB-PEC-lyase) from Mastigocladus laminosus, which catalyses both the covalent attachment of phycocyanobilin to PecA, the apo-,-subunit of phycoerythrocyanin, and its isomerization to phycoviolobilin. Thiols and the divalent metals, Mg2+ or Mn2+, were required, and the reaction was aided by the detergent, Triton X-100. Phosphate buffer inhibits precipitation of the proteins present in the reconstitution mixture, but at the same time binds the required metal. Kinetic constants were obtained for both substrates, the chromophore (Km = 12,16 µm, depending on [PecA], kcat , 1.2 × 10,4·s,1) and the apoprotein (Km = 2.4 µm at 14 µm PCB, kcat = 0.8 × 10,4·s,1). The kinetic analysis indicated that the reconstitution reaction proceeds by a sequential mechanism. By a combination of untagged and His-tagged subunits, evidence was obtained for a complex formation between PecE and PecF (subunits of PVB-PEC-lyase), and by experiments with single subunits for the prevalent function of PecE in binding and PecF in isomerizing the chromophore. [source] Structures of three diphtheria toxin repressor (DtxR) variants with decreased repressor activityACTA CRYSTALLOGRAPHICA SECTION D, Issue 5 2001Ehmke Pohl The diphtheria toxin repressor (DtxR) from Corynebacterium diphtheriae regulates the expression of the gene on corynebacteriophages that encodes diphtheria toxin (DT). Other genes regulated by DtxR include those that encode proteins involved in siderophore-mediated iron uptake. DtxR requires activation by divalent metals and holo-DtxR is a dimeric regulator with two distinct metal-binding sites per three-domain monomer. At site 1, three side chains and a sulfate or phosphate anion are involved in metal coordination. In the DtxR,DNA complex this anion is replaced by the side chain of Glu170 provided by the third domain of the repressor. At site 2 the metal ion is coordinated exclusively by constituents of the polypeptide chain. In this paper, five crystal structures of three DtxR variants focusing on residues Glu20, Arg80 and Cys102 are reported. The resolution of these structures ranges from 2.3 to 2.8,Å. The side chain of Glu20 provided by the DNA-binding domain forms a salt bridge to Arg80, which in turn interacts with the anion. Replacing either of the salt-bridge partners with an alanine reduces repressor activity substantially and it has been inferred that the salt bridge could possibly control the wedge angle between the DNA-binding domain and the dimerization domain, thereby modulating repressor activity. Cys102 is a key residue of metal site 2 and its substitution into a serine abolishes repressor activity. The crystal structures of Zn-Glu20Ala-DtxR, Zn-Arg80Ala-DtxR, Cd-Cys102Ser-DtxR and apo-Cys102Ser-DtxR in two related space groups reveal that none of these substitutions leads to dramatic rearrangements of the DtxR fold. However, the five crystal structures presented here show significant local changes and a considerable degree of flexibility of the DNA-binding domain with respect to the dimerization domain. Furthermore, all five structures deviate significantly from the structure in the DtxR,DNA complex with respect to overall domain orientation. These results confirm the importance of the hinge motion for repressor activity. Since the third domain has often been invisible in previous crystal structures of DtxR, it is also noteworthy that the SH3-like domain could be traced in four of the five crystal structures. [source] In Situ Synthesis of Trisubstituted Methanol Ligands and Their Potential as One-Pot Generators of Cubane-like Metal ComplexesCHEMISTRY - A EUROPEAN JOURNAL, Issue 27 2006Brendan F. Abrahams Dr. Abstract Two different one pot routes to a variety of metal cubane compounds are reported; one route is based on an in situ benzilic acid type rearrangement and the other involves in situ nucleophilic attack at a ketone. Diketosuccinic acid in basic solution in the presence of certain divalent metal ions undergoes a benzilic acid type rearrangement to generate the carbon oxyanion, C(CO2,)3O,, which serves as a cubane-forming bridging ligand in a series of octanuclear complexes of composition [M8{C(CO2)3O}4](H2O)12 (M=Mg, Mn, Fe, Co, Ni, Zn). At the heart of each of these highly symmetrical aggregates is an M4O4 cubane core, each oxygen component of which is provided by the alkoxo centre of a C(CO2,)3O, ligand. Reaction of 2,2,-pyridil, (2-C5H4N)COCO(2-C5H4N), and calcium nitrate in basic alcoholic solution, which proceeds by a similar benzilic acid type rearrangement, gives the cubane compounds, [Ca4L4(NO3)4] in which L=(2-C5H4N)2C(COOR)O, (R=Me or Et). Nucleophilic attack by bisulfite ion at the carbonyl carbon atom of 2,2,-dipyridyl ketone in the presence of certain divalent metals generates the electrically neutral complexes, [{(C5H4N)2SO3C(OH)}2M] (M=Mn, Fe, Co, Ni, Zn and Cd). Cubane-like complexes [M4{(C5H4N)2SO3C(O)}4] (M=Zn, Mn) can be obtained directly from 2,2,-dipyridyl ketone in one-pot reaction systems (sealed tube, 120,°C) if a base as weak as acetate ion is present to deprotonate the OH group of the initial [(C5H4N)2SO3C(OH)], bisulfite addition compound; the [(C5H4N)2SO3C(O)]2, ligand in this case plays the same cubane-forming role as the ligands C(COO,)3O, and (2-C5H4N)2C(COOR)O, above. When excess sodium sulfite is used in similar one-pot reaction mixtures, the monoanionic complexes, [M3Na{(C5H4N)2SO3C(O)}4], (M=Zn, Mn, Co) with an M3NaO4 cubane core, are formed directly from 2,2,-dipyridyl ketone. [source] |