Home About us Contact | |||
Dirichlet Process (dirichlet + process)
Terms modified by Dirichlet Process Selected AbstractsBayesian Inference in Semiparametric Mixed Models for Longitudinal DataBIOMETRICS, Issue 1 2010Yisheng Li Summary We consider Bayesian inference in semiparametric mixed models (SPMMs) for longitudinal data. SPMMs are a class of models that use a nonparametric function to model a time effect, a parametric function to model other covariate effects, and parametric or nonparametric random effects to account for the within-subject correlation. We model the nonparametric function using a Bayesian formulation of a cubic smoothing spline, and the random effect distribution using a normal distribution and alternatively a nonparametric Dirichlet process (DP) prior. When the random effect distribution is assumed to be normal, we propose a uniform shrinkage prior (USP) for the variance components and the smoothing parameter. When the random effect distribution is modeled nonparametrically, we use a DP prior with a normal base measure and propose a USP for the hyperparameters of the DP base measure. We argue that the commonly assumed DP prior implies a nonzero mean of the random effect distribution, even when a base measure with mean zero is specified. This implies weak identifiability for the fixed effects, and can therefore lead to biased estimators and poor inference for the regression coefficients and the spline estimator of the nonparametric function. We propose an adjustment using a postprocessing technique. We show that under mild conditions the posterior is proper under the proposed USP, a flat prior for the fixed effect parameters, and an improper prior for the residual variance. We illustrate the proposed approach using a longitudinal hormone dataset, and carry out extensive simulation studies to compare its finite sample performance with existing methods. [source] Bayesian Hierarchical Functional Data Analysis Via Contaminated Informative PriorsBIOMETRICS, Issue 3 2009Bruno Scarpa Summary A variety of flexible approaches have been proposed for functional data analysis, allowing both the mean curve and the distribution about the mean to be unknown. Such methods are most useful when there is limited prior information. Motivated by applications to modeling of temperature curves in the menstrual cycle, this article proposes a flexible approach for incorporating prior information in semiparametric Bayesian analyses of hierarchical functional data. The proposed approach is based on specifying the distribution of functions as a mixture of a parametric hierarchical model and a nonparametric contamination. The parametric component is chosen based on prior knowledge, while the contamination is characterized as a functional Dirichlet process. In the motivating application, the contamination component allows unanticipated curve shapes in unhealthy menstrual cycles. Methods are developed for posterior computation, and the approach is applied to data from a European fecundability study. [source] Bayesian clustering and product partition modelsJOURNAL OF THE ROYAL STATISTICAL SOCIETY: SERIES B (STATISTICAL METHODOLOGY), Issue 2 2003Fernando A. Quintana Summary. We present a decision theoretic formulation of product partition models (PPMs) that allows a formal treatment of different decision problems such as estimation or hypothesis testing and clustering methods simultaneously. A key observation in our construction is the fact that PPMs can be formulated in the context of model selection. The underlying partition structure in these models is closely related to that arising in connection with Dirichlet processes. This allows a straightforward adaptation of some computational strategies,originally devised for nonparametric Bayesian problems,to our framework. The resulting algorithms are more flexible than other competing alternatives that are used for problems involving PPMs. We propose an algorithm that yields Bayes estimates of the quantities of interest and the groups of experimental units. We explore the application of our methods to the detection of outliers in normal and Student t regression models, with clustering structure equivalent to that induced by a Dirichlet process prior. We also discuss the sensitivity of the results considering different prior distributions for the partitions. [source] Semiparametric Bayesian classification with longitudinal markersJOURNAL OF THE ROYAL STATISTICAL SOCIETY: SERIES C (APPLIED STATISTICS), Issue 2 2007Rolando De la Cruz-Mesía Summary., We analyse data from a study involving 173 pregnant women. The data are observed values of the , human chorionic gonadotropin hormone measured during the first 80 days of gestational age, including from one up to six longitudinal responses for each woman. The main objective in this study is to predict normal versus abnormal pregnancy outcomes from data that are available at the early stages of pregnancy. We achieve the desired classification with a semiparametric hierarchical model. Specifically, we consider a Dirichlet process mixture prior for the distribution of the random effects in each group. The unknown random-effects distributions are allowed to vary across groups but are made dependent by using a design vector to select different features of a single underlying random probability measure. The resulting model is an extension of the dependent Dirichlet process model, with an additional probability model for group classification. The model is shown to perform better than an alternative model which is based on independent Dirichlet processes for the groups. Relevant posterior distributions are summarized by using Markov chain Monte Carlo methods. [source] |