Home About us Contact | |||
Dipole Magnetic Field (dipole + magnetic_field)
Selected AbstractsCollisionless Plasma Expansion in the Presence of a Dipole Magnetic FieldCONTRIBUTIONS TO PLASMA PHYSICS, Issue 6 2009H. B. Nersisyan Abstract The collisionless interaction of an expanding high,energy plasma cloud with a magnetized background plasma in the presence of a dipole magnetic field is examined in the framework of a 2D3V hybrid (kinetic ions and massless fluid electrons) model. The retardation of the plasma cloud and the dynamics of the perturbed electromagnetic fields and the background plasma are studied for high Alfvén,Mach numbers using the particle,in,cellmethod. It is shown that the plasma cloud expands excluding the ambient magnetic field and the background plasma to form a diamagnetic cavity which is accompanied by the generation of a collisionless shock wave. The energy exchange between the plasma cloud and the background plasma is also studied and qualitative agreement with the analytical model suggested previously is obtained (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Can a slowly rotating neutron star be a radio pulsar?MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 3 2005Ya. N. Istomin ABSTRACT It is shown that the radius of curvature of magnetic field lines in the polar region of a rotating magnetized neutron star can be significantly less than the usual radius of curvature of the dipole magnetic field. The magnetic field in the polar cap is distorted by toroidal electric currents flowing in the neutron star crust. These currents close up the magnetospheric currents driven by the electron,positron plasma generation process in the pulsar magnetosphere. Owing to the decrease in the radius of curvature, electron,positron plasma generation becomes possible even for slowly rotating neutron stars, with PB,2/312 < 10 s, where P is the period of star rotation and B12=B/1012 G is the magnitude of the magnetic field on the star surface. [source] PSR J0609+2130: a disrupted binary pulsar?MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2004D. R. Lorimer ABSTRACT We report the discovery and initial timing observations of a 55.7-ms pulsar, J0609+2130, found during a 430-MHz drift-scan survey with the Arecibo radio telescope. With a spin-down rate of 3.1 × 10,19 s s,1 and an inferred surface dipole magnetic field of only 4.2 × 109 G, J0609+2130 has very similar spin parameters to the isolated pulsar J2235+1506 found by Camilo, Nice & Taylor. While the origin of these weakly magnetized isolated neutron stars is not fully understood, one intriguing possibility is that they are the remains of high-mass X-ray binary systems which were disrupted by the supernova explosion of the secondary star. [source] |