Dinucleotide Phosphate (dinucleotide + phosphate)

Distribution by Scientific Domains

Kinds of Dinucleotide Phosphate

  • adenine dinucleotide phosphate
  • nicotinamide adenine dinucleotide phosphate


  • Selected Abstracts


    Free radical generation and oxidative stress with ageing and exercise: Differential effects in the myocardium and liver

    ACTA PHYSIOLOGICA, Issue 4 2000
    Bejma
    Reactive oxygen species and other oxidants are implicated in the mechanisms of biological ageing and exercise-induced tissue damage. The present study examined the effects of ageing and an acute bout of exercise on intracellular oxidant generation, lipid peroxidation, protein oxidation and glutathione (GSH) status in the heart and liver of young adult (8 month, N=24) and old (24 month, N=24) male Fischer 344 rats. Young rats ran on treadmill at 25 m min,1, 5% grade until exhaustion (55.4 ± 2.7 min), whereas old rats ran at 15 m min,1, 5% until exhaustion (58.0 ± 2.7 min). Rate of dichlorofluorescin (DCFH) oxidation, an indication of intracellular oxidant production, was significantly higher in the homogenates of aged heart and liver compared with their young counterparts. In the isolated heart and liver mitochondria, ageing increased oxidant production by 29 and 32% (P < 0.05), respectively. Acute exercise increased oxidant production in the aged heart but not in the liver. When nicodinamide dinucleotide phosphate (reduced), adenosine diphosphate and Fe3+ were included in the assay, DCFH oxidation rate was 47 and 34% higher (P < 0.05) in the aged heart and liver homogenates, respectively, than the young ones. The age differences in the induced state reached 83 and 140% (P < 0.01) in isolated heart and liver mitochondria, respectively. Lipid peroxidation was increased in the aged liver and exercised aged heart, whereas protein carbonyl content was elevated only in the aged heart (P < 0.05). Although our data using DCFH method probably underestimated cellular oxidant production because of time delay and antioxidant competition, it is clear that oxidative stress was enhanced in both heart and liver with old age. Furthermore, aged myocardium showed greater susceptibility to oxidative stress after heavy exercise. [source]


    Disposable Amperometric Sensors for Thiols with Special Reference to Glutathione

    ELECTROANALYSIS, Issue 18 2008
    Dipankar Bhattacharyay
    Abstract The antioxidant ,reduced glutathione' tripeptide is conventionally called glutathione (GSH). The oxidized form is a sulfur-sulfur linked compound, known as glutathione disulfide (GSSG). Glutathione is an essential cofactor for antioxidant enzymes; it provides protection also for the mitochondria against endogenous oxygen radicals. The ratio of these two forms can act as a marker for oxidative stress. The majority of the methods available for estimation of both the forms of glutathione are based on colorimetric and electrochemical assays. In this study, electrochemical sensors were developed for the estimation of both GSH and GSSG. Two different types of transducers were used: i) screen-printed three-electrode disposable sensor (SPE) containing carbon working electrode, carbon counter electrode and silver/silver chloride reference electrode; ii) three-electrode disposable system (CDE) consisting of three copper electrodes. 5,5,-dithiobis(2-nitrobenzoic acid) (DTNB) was used as detector element for estimation of total reduced thiol content. The enzyme glutathione reductase along with a co-enzyme reduced nicotinamide adenine dinucleotide phosphate was used to estimate GSSG. By combining the two methods GSH can also be estimated. The detector elements were immobilized on the working electrodes of the sensors by bulk polymerization of acrylamide. The responses were observed amperometrically. The detection limit for thiol (GSH) was less than 0.6,ppm when DTNB was used, whereas for GSSG it was less than 0.1,ppm. [source]


    Reduced nicotinamide adenine dinucleotide phosphate and the higher incidence of pollution-induced liver cancer in female flounder

    ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2003
    Angela Koehler
    Abstract In biological effect monitoring programs, induction of biotransformation and detoxification enzymes is used as a biomarker for pollution. Yet sex differences are usually neglected in the availability of reduction equivalents needed in these metabolic pathways and may affect biomarker responses. For example, female flounder have a threefold higher incidence of macroscopic liver nodules than males of the same age class in polluted environments of the North Sea that progress toward carcinomas, whereas tumors in males virtually never develop into cancer. Evidence is presented in this review that NADPH plays a significant role in this sex-related response to xenobiotics in liver of flounder. The NADPH is needed for biosynthesis, particularly of lipids and lipoproteins, and detoxification processes such as one-electron and two-electron biotransformation and conjugation and, therefore, its availability as substrate determines biomarker responses. Biotransformation of xenobiotics is more strongly induced and conjugation processes are less affected in male flounder liver during exposure. In female liver, NADPH is required for production of the yolk precursor protein vitellogenin for oocyte production. The latter process has a higher priority than the NADPH-requiring detoxification processes because reproductive success is more relevant in evolutionary perspectives than the survival of the individual female. The data reviewed here suggest that these sex-related differences in NADPH metabolism are a major cause of the higher incidence of liver cancer in female flounder in polluted environments. [source]


    Thermodynamic characterization of substrate and inhibitor binding to Trypanosoma brucei 6-phosphogluconate dehydrogenase

    FEBS JOURNAL, Issue 24 2007
    Katy Montin
    6-Phosphogluconate dehydrogenase is a potential target for new drugs against African trypanosomiasis. Phosphorylated aldonic acids are strong inhibitors of 6-phosphogluconate dehydrogenase, and 4-phospho- d -erythronate (4PE) and 4-phospho- d -erythronohydroxamate are two of the strongest inhibitors of the Trypanosoma brucei enzyme. Binding of the substrate 6-phospho- d -gluconate (6PG), the inhibitors 5-phospho- d -ribonate (5PR) and 4PE, and the coenzymes NADP, NADPH and NADP analogue 3-amino-pyridine adenine dinucleotide phosphate to 6-phospho- d -gluconate dehydrogenase from T. brucei was studied using isothermal titration calorimetry. Binding of the substrate (Kd = 5 µm) and its analogues (Kd =1.3 µm and Kd = 2.8 µm for 5PR and 4PE, respectively) is entropy driven, whereas binding of the coenzymes is enthalpy driven. Oxidized coenzyme and its analogue, but not reduced coenzyme, display a half-site reactivity in the ternary complex with the substrate or inhibitors. Binding of 6PG and 5PR poorly affects the dissociation constant of the coenzymes, whereas binding of 4PE decreases the dissociation constant of the coenzymes by two orders of magnitude. In a similar manner, the Kd value of 4PE decreases by two orders of magnitude in the presence of the coenzymes. The results suggest that 5PR acts as a substrate analogue, whereas 4PE mimics the transition state of dehydrogenation. The stronger affinity of 4PE is interpreted on the basis of the mechanism of the enzyme, suggesting that the inhibitor forces the catalytic lysine 185 into the protonated state. [source]


    Overproduction of reactive oxygen species in end-stage renal disease patients: A potential component of hemodialysis-associated inflammation

    HEMODIALYSIS INTERNATIONAL, Issue 1 2005
    Marion Morena
    Abstract During the past decade, hemodialysis (HD)-induced inflammation has been linked to the development of long-term morbidity in end-stage renal disease (ESRD) patients on regular renal replacement therapy. Because interleukins and anaphylatoxins produced during HD sessions are potent activators for nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, an example of an enzyme that is responsible for overproduction of reactive oxygen species (ROS), this may constitute a link between leukocyte activation and cell or organ toxicity. Oxidative stress, which results from an imbalance between oxidant production and antioxidant defense mechanisms, has been documented in ESRD patients using lipid and/or protein oxidative markers. Characterization of HD-induced oxidative stress has included identification of potential activators for NADPH oxidase. Uremia per se could prime phagocyte oxidative burst. HD, far from improving the oxidative status, results in an enhancement of ROS owing to hemoincompatibility of the dialysis system, hemoreactivity of the membrane, and trace amounts of endotoxins in the dialysate. In addition, the HD process is associated with an impairment in antioxidant mechanisms. The resulting oxidative stress has been implicated in long-term complications including anemia, amyloidosis, accelerated atherosclerosis, and malnutrition. Prevention of oxidative stress in HD might focus on improving the hemocompatibility of the dialysis system, supplementation of deficient patients with antioxidants, and modulation of NADPH oxidase by pharmacologic approaches. [source]


    Carbonyl reductase 1 as a novel target of (,)-epigallocatechin gallate against hepatocellular carcinoma,

    HEPATOLOGY, Issue 2 2010
    Weixue Huang
    Human carbonyl reductase 1 (CBR1) converts the antitumor drug and anthracycline daunorubicin (DNR) into the alcohol metabolite daunorubicinol (DNROL) with significantly reduced antitumor activity and cardiotoxicity, and this limits the clinical use of DNR. Inhibition of CBR1 can thus increase the efficacy and decrease the toxicity of DNR. Here we report that (,)-epigallocatechin gallate (EGCG) from green tea is a promising inhibitor of CBR1. EGCG directly interacts with CBR1 and acts as a noncompetitive inhibitor with respect to the cofactor reduced nicotinamide adenine dinucleotide phosphate and the substrate isatin. The inhibition is dependent on the pH, and the gallate moiety of EGCG is required for activity. Molecular modeling has revealed that EGCG occupies the active site of CBR1. Furthermore, EGCG specifically enhanced the antitumor activity of DNR against hepatocellular carcinoma SMMC7721 cells expressing high levels of CBR1 and corresponding xenografts. We also demonstrated that EGCG could overcome the resistance to DNR by Hep3B cells stably expressing CBR1 but not by RNA interference of CBR1-HepG2 cells. The level of the metabolite DNROL was negatively correlated with that of EGCG in the cell extracts. Finally, EGCG decreased the cardiotoxicity of DNR in a human carcinoma xenograft model with both SMMC7721 and Hep3B cells in mice. Conclusion: These results strongly suggest that EGCG can inhibit CBR1 activity and enhance the effectiveness and decrease the cardiotoxicity of the anticancer drug DNR. These findings also indicate that a combination of EGCG and DNR might represent a novel approach for hepatocellular carcinoma therapy or chemoprevention. (HEPATOLOGY 2010;) [source]


    Hepatocyte NAD(P)H oxidases as an endogenous source of reactive oxygen species during hepatitis C virus infection,

    HEPATOLOGY, Issue 1 2010
    Nabora Soledad Reyes de Mochel
    Oxidative stress has been identified as a key mechanism of hepatitis C virus (HCV),induced pathogenesis. Studies have suggested that HCV increases the generation of hydroxyl radical and peroxynitrite close to the cell nucleus, inflicting DNA damage, but the source of reactive oxygen species (ROS) remains incompletely characterized. We hypothesized that HCV increases the generation of superoxide and hydrogen peroxide close to the hepatocyte nucleus and that this source of ROS is reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase 4 (Nox4). Huh7 human hepatoma cells and telomerase-reconstituted primary human hepatocytes, transfected or infected with virus-producing HCV strains of genotypes 2a and 1b, were examined for messenger RNA (mRNA), protein, and subcellular localization of Nox proteins along with the human liver. We found that genotype 2a HCV induced persistent elevations of Nox1 and Nox4 mRNA and proteins in Huh7 cells. HCV genotype 1b likewise elevated the levels of Nox1 and Nox4 in telomerase-reconstituted primary human hepatocytes. Furthermore, Nox1 and Nox4 proteins were increased in HCV-infected human liver versus uninfected liver samples. Unlike Nox1, Nox4 was prominent in the nuclear compartment of these cells as well as the human liver, particularly in the presence of HCV. HCV-induced ROS and nuclear nitrotyrosine could be decreased with small interfering RNAs to Nox1 and Nox4. Finally, HCV increased the level of transforming growth factor beta 1 (TGF,1). TGF,1 could elevate Nox4 expression in the presence of infectious HCV, and HCV increased Nox4 at least in part through TGF,1. Conclusion: HCV induced a persistent elevation of Nox1 and Nox4 and increased nuclear localization of Nox4 in hepatocytes in vitro and in the human liver. Hepatocyte Nox proteins are likely to act as a persistent, endogenous source of ROS during HCV-induced pathogenesis. Hepatology 2010 [source]


    Lactoferrin decreases pollen antigen-induced allergic airway inflammation in a murine model of asthma

    IMMUNOLOGY, Issue 2 2006
    Marian L. Kruzel
    Summary Pollen grains contain reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidases and in contact with mucosal surfaces generate superoxide anion (O2,,). In the presence of iron, O2,, may be converted to more reactive oxygen radicals, such as to H2O2 and/or ,OH, which may augment antigen-induced airway inflammation. The aim of the study was to examine the impact of lactoferrin (LF), an iron-binding protein, on ragweed (Ambrosia artemisiifolia) pollen extract (RWE)-induced cellular oxidative stress levels in cultured bronchial epithelial cells and accumulation of inflammatory and mucin-producing cells in airways in a mouse model of allergic airway inflammation. Results show that LF lowered RWE-induced increase in cellular reactive oxygen species (ROS) levels in bronchial epithelial cells. Most importantly, LF significantly decreased accumulation of eosinophils into airways and subepithelium of intranasally challenged, sensitized mice. LF also prevented development of mucin-producing cells. Amb a 1, the major allergenic ragweed pollen antigen lacking NAD(P)H oxidase activity, induced low-grade airway inflammation. When administered along with glucose oxidase (G-ox), a superoxide-generating enzyme, Amb a 1 induced robust airway inflammation, which was significantly lowered by LF. Surprisingly, LF decreased also inflammation caused by Amb a 1 alone. Iron-saturated hololactoferrin had only a marginal effect on RWE-induced cellular ROS levels and RWE- or Amb a 1 plus G-ox-induced inflammation. We postulate that free iron in the airways chemically reduces O2,, to more reactive species which augment antigen-induced inflammation in a mouse model of asthma. Our results suggest the utility of LF in human allergic inflammatory disorders. [source]


    Nicotinamide , biologic actions of an emerging cosmetic ingredient

    INTERNATIONAL JOURNAL OF COSMETIC SCIENCE, Issue 5 2005
    N. Otte
    Synopsis Nicotinamide, the water-soluble amide of nicotinic acid, is a component of the two most important coenzymes , nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate. Thus nicotinamide is involved in numerous oxidation,reduction reactions in mammalian biological systems. Nicotinamide essentially acts as an antioxidant. Most effects are exerted via poly-adenosine diphosphate-ribose polymerase inhibition. Thus nicotinamide increasingly gains interest in the prevention and treatment of several skin diseases. It is well established in the systemic therapy of pellagra, a deficiency disease linked to nicotinic acid, but with respect to topical use there is still a need for further evidence with respect to its manifold potential uses. Currently, its local use is established in the care of acne-prone skin. Résumé Le nicotinamide, l,amide hydrosoluble de l'acide nicotinique est un composant des deux plus importants co-enzymes NAD et NADP. Le nicotinamide est impliqué dans de nombreuses réactions d'oxydo-réduction dans les systèmes biologiques des mammifères. Le nicotinamide agit essentiellement en tant qu'anti-oxydant. La plupart des effets sont exercés via l'inhibition de la poly (ADP-ribose) polymerase (PARP). Ainsi, l'intérêt du nicotinamide croît dans la prévention et le traitement de nombreuses maladies cutanées. Son rôle est bien établi dans la thérapie systémique de la pellagre, une maladie déficiente liée à l'acide nicotinique, mais en ce qui concerne son utilisation topique, du fait de ses multiples applications potentielles, il est encore nécessaire d'accumuler davantage de preuves. Son utilisation locale est couramment admise dans le traitement des peaux sujettes à l'acné. [source]


    Molecular Modeling Of The Aldose Reductase-Inhibitor Complex Based On The X-Ray Crystal Structure And Studies With Single-Site- Directed Mutants

    JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 2 2000
    S.B. Singh
    Aldose reductase (AR) has been implicated in the etiology of the secondary complications of diabetes. This enzyme catalyzes the reduction of glucose to sorbitol using nicotinamide adenine dinucleotide phosphate as an essential cofactor. AR has been localized at the sites of tissue damage, and inhibitors of this enzyme prevent the development of neuropathy, nephropathy, retinopathy, and cataract formation in animal models of diabetes. The crystal structure of AR complexed with zopolrestat, a potent inhibitor of AR, has been described. (1) We have generated a model of the AR-inhibitor complex based on the reported C alpha coordinates of the protein and results of a structure-activity relationship study using four structurally distinct classes of inhibitors, recombinant human AR, and four single-site-directed mutants of this enzyme. The effects of the site-directed mutations on residues within the active site of the enzyme were evaluated by average interaction energy calculations and by calculations of carbon atom surface area changes. These values correlated well with the IC50 values for zopolrestat with the wildtype and mutant enzymes, validating the model. On the basis of the zopolrestat-binding model, we have proposed binding models for 10 other AR inhibitors. Our models have enabled us to gain a qualitative understanding of the binding domains of the enzyme and how different inhibitors impact the size and shape of the binding site. [source]


    Microvascular Display of Xanthine Oxidase and NADPH Oxidase in the Spontaneously Hypertensive Rat

    MICROCIRCULATION, Issue 7 2006
    FRANK A. DELANO
    ABSTRACT Objective: Oxygen free radical production in hypertension may be associated with elevated arteriolar tone and organ injury. Previous results suggest an enhanced level of oxygen free radical formation in microvascular endothelium and in circulating neutrophils associated with xanthine oxidase activity in the spontaneously hypertensive rats (SHR) compared with their normotensive controls, the Wistar Kyoto rats (WKY). The aim of this study was to gain more detailed understanding of where oxidative enzymes are located in the microcirculation. Methods: An approach was developed to delineate the cellular distribution of two selected oxidative enzymes, xanthine oxidase and nicotinamide adenine dinucleotide phosphate (NADPH) dependent oxidase (protein 67-kDa fraction). Immunolabeling with peroxidase substrate was utilized, which permits full delineation of the primary antibody in all microvascular structures of the mesentery. Results: Xanthine oxidase is present in the endothelium of all segments of the microcirculation, in mast cells, and in parenchymal cells of the mesentery. NADPH oxidase can be detected in the endothelium, leukocytes, and mast cells and with lower levels in parenchymal cells. The mesentery of WKY and SHR has similar enzyme distributions with enhancements on the arteriolar and venular side of the microcirculation that coincide with the sites of enhanced free radical production recently reported. Immune label measurements under standardized conditions indicate that both enzymes are significantly enhanced in the SHR. Adrenalectomy, which serves to reduce the blood pressure and free radical production of the SHR to normotensive levels, leads to a reduction of NADPH and xanthine oxidase to normotensive levels, while supplementation of adrenalectomized SHR with dexamethasone significantly increases the oxidase expression in several parts of the microcirculation to levels above the WKY rats. Conclusion: The results indicate that enhanced expression of NADPH and xanthine oxidase in the SHR depends on an adrenal pathway that is detectable in the arteriolar and venular network at high and low pressure regions of the circulation. [source]


    Photoactive Protochlorophyllide Regeneration in Cotyledons and Leaves from Higher Plants,,

    PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 5 2000
    Benoît Schoefs
    ABSTRACT Chlorophyll accumulation during greening implies the continuous transformation of photoactive protochlorophyllide (Pchlide) to chlorophyllide. Since this reaction is a light-dependent step, the study of regeneration of photoactive Pchlide under a continuous illumination is difficult. Therefore this process is best studied on etiolated plants during a period of darkness following the initial photoreduction of photoactive Pchlide. In this study, the regeneration process has been studied using spinach cotyledons, as well as barley and bean leaves, illuminated by a single saturating flash. The regeneration was characterized using 77 K fluorescence emission and excitation spectra and high-performance liquid chromatography. The fluorescence data indicated that the same spectral forms of photoactive Pchlide are regenerated by different pathways: (1) photoactive Pchlide regeneration starts immediately after the photoreduction through the formation of a nonphotoactive Pchlide form, emitting fluorescence at approximately 651 nm. This form is similar to the large aggregate of photoactive Pchlide present before the illumination, but it contains oxidized form of nicotinamide adenine dinucleotide phosphate, instead of the reduced form (NADPH), in the ternary complexes; and (2) after the dislocation of the large aggregates of chlorophyllide,light-dependent NADPH:Pchlide a photooxidoreductase,NADPH ternary complexes, the regeneration occurs at the expense of the several nonphotoactive Pchlide spectral forms present before the illumination. [source]


    Antioxidant and antiglycation properties of total saponins extracted from traditional Chinese medicine used to treat diabetes mellitus

    PHYTOTHERAPY RESEARCH, Issue 2 2008
    Miaomiao Xi
    Abstract Eleven antidiabetic traditional Chinese medicine (TCM) extracts rich in saponins were examined for their antioxidant and antiglycation activities. The antioxidant activities of these extracts were evaluated by studying the inhibition of lipid peroxidation in rat liver microsomes induced by ascorbate/Fe2+, cumine hydroperoxide (CHP) or CCl4/reduced form of nicotinamide-adenine dinucleotide phosphate (NADPH). The antioxidant capacities were also evaluated by studying the scavenging of 2,2,-diphenyl-1-picrylhydrazyl (DPPH) free radical. The antiglycation activities of these extracts were evaluated by hemoglobin- , -gluconolactone (, -Glu) assay, bovine serum albumin (BSA)-glucose assay and N-acetyl-glycyl-lysine methyl ester (GK peptide)-ribose assay. Aralia taibaiensis outperformed other extracts in most of the assays except inhibition of early glycation products formation, where Acanthopanax senticosus showed higher activity. Aralia taibaiensis was particularly potent in inhibiting the late glycation and formation of advanced glycation end products (AGEs) on proteins. The antioxidant and antiglycation activities of most extracts were correlated with the saponin content. The results demonstrate that the antidiabetic activities of most extracts could be explained, at least in part, by their combined antioxidant and antiglycation properties. Copyright © 2007 John Wiley & Sons, Ltd. [source]


    Impact of oxidative stress on lung diseases

    RESPIROLOGY, Issue 1 2009
    Hee Sun PARK
    ABSTRACT Reactive oxygen species (ROS) are products of normal cellular metabolism and are known to act as second messengers. Under physiological conditions, ROS participate in maintenance of cellular ,redox homeostasis' in order to protect cells against oxidative stress through various redox-regulatory mechanisms. Overproduction of ROS, most frequently due to excessive stimulation of either reduced nicotinamide adenine dinucleotide phosphate by cytokines or the mitochondrial electron transport chain and xanthine oxidase, results in oxidative stress. Oxidative stress is a deleterious process that leads to lung damage and consequently to various disease states. Knowledge of the mechanisms of ROS regulation could lead to the pharmacological manipulation of antioxidants in lung inflammation and injury. [source]


    NADH/NADPH oxidase p22 phox C242T polymorphism and lipid peroxidation in coronary artery disease

    CLINICAL PHYSIOLOGY AND FUNCTIONAL IMAGING, Issue 6 2001
    O. Stanger
    The nicotinamide adenine dinucleotide (NADH)/nicotinamide adenine dinucleotide phosphate (NADPH) oxidase system is a major source of superoxide anion (·O2,) production in the human vasculature and may therefore influence lipid peroxidation and severity of atherosclerosis. This study aimed to investigate a hypothetical influence of the p22 phox C242T polymorphism on the generation of malondialdehyde (MDA), extent and clinical onset of coronary artery disease (CAD) in patients. We studied 108 male Caucasians with angiographically documented CAD and 45 controls free of vascular disease under 60 years of age. p22 phox C242T genotypes and MDA levels were determined. Additional information was obtained from each subject on classic risk factors and clinical events of CAD. Genotype distribution in CAD-patients and controls was thymine,thymine (TT): 13·8% (13·3%), cytosine,thymine (CT): 46·3% (53·3%) and cytosine,cytosine (CC): 39·8% (33·3%), respectively. No significant influence was seen of the p22 phox C242T polymorphism on corresponding mean MDA levels in both groups. Furthermore, age at onset of first time angina pectoris (AP) and myocardial infarction (MCI) was not significantly different between genotype groups. It is concluded that the C242T polymorphism of the p22 phox gene is not associated with lipid peroxidation as measured by MDA, and is not a genetic risk marker for CAD Caucasians. [source]