Dilution Effect (dilution + effect)

Distribution by Scientific Domains


Selected Abstracts


New insight into suction and dilution effects in CE coupled to MS via an ESI interface.

ELECTROPHORESIS, Issue 10 2009
Dilution effect
Abstract The hyphenation of CE with MS is nowadays accepted as a powerful analytical approach. As far as ESI, the most common interface, is concerned, one challenge is to provide the most sensitive as well as quantitative information, which is quite a difficult task, as it is linked, among other factors, to suction and dilution effects. In the coaxial ESI configuration, it has been previously demonstrated that suction effect depends on many parameters inherent to the ESI interface geometry, the prevailing ones being the CE capillary protrusion from the interface needle, the sheath liquid (SL) and the overall BGE flow rates and velocity profile. In this paper, dilution effect is studied, as the CE electrolyte is mixed with SL at the interface. Considering peak intensity and efficiency, this effect was studied as a function of the various parameters of the interface (capillary protrusion from the SL tube, nebulizing gas, SL and CE electrolyte flow rates) or of the source (skimmer and ESI voltages, drying gas flow rate and temperature). It appears that the dilution effect seems slightly lower than what can be anticipated from the proportions of the liquid flow rates. This study also indicates that suction effect has to be considered first to better understand the dilution phenomenon, as suction effect leads to an increase in peak intensity, before a dilution effect appears. [source]


Wastewater treatment plants as a pathway for aquatic contamination by pharmaceuticals in the Ebro river basin (Northeast Spain)

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 8 2007
Meritxell Gros
Abstract The occurrence of 28 pharmaceuticals of major human consumption in Spain, including analgesics and anti-inflam-matories, lipid regulators, psychiatric drugs, antibiotics, antihistamines, and ,-blockers, was assessed along the Ebro river basin, one of the biggest irrigated lands in that country. Target compounds were simultaneously analyzed by off-line solid-phase extraction, followed by liquid chromatography-tandem mass spectrometry. The loads of detected pharmaceuticals and their removal rates were studied in seven wastewater treatment plants (WWTPs) located in the main cities along the basin. Total loads ranged from 2 to 5 and from 0.5 to 1.5 g/d/1,000 inhabitants in influent and effluent wastewaters, respectively. High removal rates (60,90%) were achieved mainly for analgesics and anti-inflammatories. The other groups showed lower rates, ranging from 20 to 60%, and in most cases, the antiepileptic carbamazepine, macrolide antibiotics, and trimethoprim were not eliminated at all. Finally, the contribution of WWTP effluents to the presence of pharmaceuticals in receiving river waters was surveyed. In receiving surface water, the most ubiquitous compounds were the analgesics and anti-inflammatories ibuprofen, diclofenac, and naproxen; the lipid regulators bezafibrate and gemfibrozil; the antibiotics erythromycin, azithromycin, sulfamethoxazole, trimethoprim, and less frequently, ofloxacin; the antiepileptic carbamazepine; the antihistamine ranitidine; and the ,-blockers atenolol and sotalol. Although levels found in WWTP effluents ranged from low ,g/L to high ng/L, pharmaceuticals in river waters occurred at levels at least one order of magnitude lower (low ng/L range) because of dilution effect. From the results obtained, it was proved that WWTP are hot spots of aquatic contamination concerning pharmaceuticals of human consumption. [source]


Seasonality effects on pharmaceuticals and s -triazine herbicides in wastewater effluent and surface water from the Canadian side of the upper Detroit River

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 9 2006
Wen Yi Hua
Abstract The influence of seasonal changes in water conditions and parameters on several major pharmacologically active compounds (PhACs) and s -triazine herbicides was assessed in the wastewater and sewage treatment plant (WSTP) effluent as well as the downstream surface water from sites on the Canadian side of the upper Detroit River, between the Little River WSTP and near the water intake of a major drinking water treatment facility for the City of Windsor (ON, Canada). The assessed PhACs were of neutral (carbamazepine, cotinine, caffeine, cyclophosphamide, fluoxetine, norfluoxetine, pentoxifylline, and trimethoprim) and acidic (ibuprofen, bezafibrate, clofibric acid, diclofenac, fenoprofen, gemfibrozil, indomethacin, naproxen, and ketoprofen) varieties. The major assessed s -triazine herbicides were atrazine, simazine, propazine, prometon, ametryn, prometryn, and terbutryn. At sampling times from September 2002 to June 2003, 15 PhACs were detected in the WSTP effluent at concentrations ranging from 1.7 to 1,244 ng/L. The PhAC concentrations decreased by as much 92 to 100% at the Little River/Detroit River confluence because of the river dilution effect, with further continual decreases at sites downstream from the WSTP. The only quantifiable s -triazine in WSTP effluent, atrazine, ranged from 6.7 to 200 ng/L and was higher in Detroit River surface waters than in WSTP effluent. Only carbamazepine, cotinine, and atrazine were detectable at the low-nanogram and subnanogram levels in surface waters near a drinking water intake site. Unlike the PhACs, atrazine in the Detroit River is not attributable to point sources, and it is heavily influenced by seasonal agricultural usage and runoff. Detroit River surface water concentrations of carbamazepine, cotinine, and atrazine may present a health concern to aquatic wildlife and to humans via the consumption of drinking water. [source]


Oxidative stability and acceptability of camelina oil blended with selected fish oils

EUROPEAN JOURNAL OF LIPID SCIENCE AND TECHNOLOGY, Issue 8 2010
Deirdre Ní Eidhin
Abstract The effects of blending camelina oil with a number of fish oils on oxidative stability and fishy odour were evaluated. Camelina oil was found to be more stable than tuna oil, ,omega-3' fish oil and salmon oil as indicated by predominantly lower ,-anisidine (AV), thiobarbituric acid reactive substances (TBARS) and conjugated triene levels (CT) during storage at 60,°C for 20,days (p,<,0.05). Peroxide values (PV) were similar for all oils until Day 13 when values for camelina oil were higher. Values for blends of the fish oils (50, 25, 15, 5%) with camelina oil were generally between those of their respective bulk oils indicating a dilution effect. Camelina oil had a similar odour score (p,<,0.05) to sunflower oil (9.2 and 9.6, respectively) indicating, as expected, an absence of fishy odours. In comparison, the fish oils had lower scores of 6.1 to 6.6 (p,<,0.05) indicating mild to moderate fishy odours. Odour scores were improved at the 25% fish oil levels (p,<,0.05) and were not different to camelina oil at the 15 or 5% levels (p,<,0.05). Practical applications: Camelina oil is a potentially important functional food ingredient providing beneficial n-3 PUFA. Oil extracted from Camelina sativa seeds contains greater than 50% polyunsaturated fatty acids of which 35-40% is ,-linolenic acid (C18:3,3, ALA), an essential omega-3 fatty acid 1. While EPA and DHA from fish oils are more potent nutritionally, they are less stable than ALA. This work evaluated innovative blends of fish oil with camelina oil for stability and acceptability. The results demonstrate that there is potential for use of blends of camelina oil with fish oils in food products, as the results show some benefits in terms of reduction of fishy odours. Such information could be valuable in relation to formulation of food products containing high levels of n-3 PUFA from both plant and fish sources. [source]


Micellar Effects on the Reaction between an Arenediazonium Ion and the Antioxidants Gallic Acid and Octyl Gallate

HELVETICA CHIMICA ACTA, Issue 1 2008
Losada Barreiro, Sonia
Abstract The effect of sodium dodecyl sulfate (SDS) micelles on the reaction between the 3-methylbenzenediazonium (3MBD) ion and either the hydrophilic antioxidant gallic acid (GA) or the hydrophobic analogue octyl gallate (OG) have been investigated as a function of pH. Titration of GA in the absence and presence of SDS micelles showed that the micelles do not alter the first ionization equilibrium of GA. Analysis of the dependence of the observed rate constant (kobs) with pH shows that the reactive species are GA2, and OG,. Kinetics results in the absence and presence of SDS micelles suggest that SDS aggregates do not alter the expected reaction pathway. SDS Micelles inhibit the spontaneous decomposition of 3MBD as well as the reaction between 3MBD and either GA or OG, and upon increasing the SDS concentration, with kobs approaching the value for the thermal decomposition of 3MBD in the presence of SDS. Our results are consistent with the prediction of the pseudophase model and show that the origin of the inhibition for the reaction with GA is different to that for the reaction with OG; in the former case, the observed inhibition can be rationalized in terms of the micelle-induced electrostatic separation of reactants in the micellar Stern layer, whereas the observed inhibition in the reaction with OG is a consequence of the dilution effect caused by increasing SDS concentration, decreasing the local OG, concentration in the Stern layer. [source]


Does Centralization Affect the Number and Size of Lobbies?

JOURNAL OF PUBLIC ECONOMIC THEORY, Issue 3 2010
MICHELA REDOANO
Previous research has shown that the effect of fiscal centralization is to reduce lobbying. However empirical evidence suggests that this is not always the case. This paper attempts to explain the empirical evidence in a two-jurisdiction political economy model of endogenous lobby formation and policy determination. We measure lobbying in two ways: (i) the number of lobbies formed under the two settings and (ii) their impact on policy decisions. We show that, contrary to the predictions of the preference dilution effect, the effect of centralization on lobbying are ambiguous with respect to both measures of lobbies. [source]


Alloying with copper to reduce metal dusting of nickel

MATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 11 2005
J. Zhang
Abstract Copper is thought to be noncatalytic to carbon deposition from gas atmospheres, and owing to its extremely low solubility for carbon, inert to the metal dusting reaction. Thus, the addition of copper to nickel, which forms a near perfect solid solution, may be able to suppress or greatly retard the metal dusting of the alloy, without the need for a protective oxide scale on the surface. The dusting behaviour of Ni-Cu alloys containing up to 50 wt% Cu, along with pure Cu, was investigated in a 68%CO-31%H2 -1%H2O gas mixture (aC: 19) at 680°C for up to 150 h. Surface analysis showed that two types of carbon deposits, graphite particle clusters and filaments, were observed on pure Ni and Ni-Cu alloys with Cu contents of up to 5 wt%. Alloys with more than 10 wt% Cu showed very little coking, forming filaments only. SEM and TEM analyses revealed metal particles encapsulated by graphite shells within the graphite particle clusters, and metal particles at filament tips or embedded along their lengths. A kinetic investigation showed that alloy dusting rates decreased significantly with increasing copper levels up to 10 wt%. At copper concentrations of more than 20 wt%, the rate of metal dusting was negligible. Although pure copper is not catalytic to carbon formation, scattered carbon nanotubes were observed on its surface. The effect of copper on alloy dusting rates is attributed to a dilution effect. [source]


Seasonal and spatial dynamics of ectoparasite infestation of a threatened reptile, the tuatara (Sphenodon punctatus)

MEDICAL AND VETERINARY ENTOMOLOGY, Issue 4 2008
S. S. GODFREY
Abstract The conservation of threatened vertebrate species and their threatened parasites requires an understanding of the factors influencing their distribution and dynamics. This is particularly important for species maintained in conservation reserves at high densities, where increased contact among hosts could lead to increased rates of parasitism. The tuatara (Sphenodon punctatus) (Reptilia: Sphenodontia) is a threatened reptile that persists at high densities in forests (, 2700 tuatara/ha) and lower densities in pastures and shrubland (< 200 tuatara/ha) on Stephens Island, New Zealand. We investigated the lifecycles and seasonal dynamics of infestation of two ectoparasites (the tuatara tick, Amblyomma sphenodonti, and trombiculid mites, Neotrombicula sp.) in a mark-recapture study in three forest study plots from November 2004 to March 2007, and compared infestation levels among habitat types in March 2006. Tick loads were lowest over summer and peaked from late autumn (May) until early spring (September). Mating and engorgement of female ticks was highest over spring, and larval tick loads subsequently increased in early autumn (March). Nymphal tick loads increased in September, and adult tick loads increased in May. Our findings suggest the tuatara tick has a 2- or 3-year lifecycle. Mite loads were highest over summer and autumn, and peaked in March. Prevalences (proportion of hosts infected) and densities (estimated number of parasites per hectare) of ticks were similar among habitats, but tick loads (parasites per host) were higher in pastures than in forests and shrub. The prevalence and density of mites was higher in forests than in pasture or shrub, but mite loads were similar among habitats. We suggest that a higher density of tuatara in forests may reduce the ectoparasite loads of individuals through a dilution effect. Understanding host,parasite dynamics will help in the conservation management of both the host and its parasites. [source]


Escaping parasitism in the selfish herd: age, size and density-dependent warble fly infestation in reindeer

OIKOS, Issue 3 2007
Per Fauchald
It has been suggested that animals may escape attack from mobile parasites by aggregating in selfish herds. A selfish herd disperses the risk of being attacked among its members and the per individual risk of parasite infection should therefore decrease with increasing animal density through the encounter,dilution effect. Moreover, in a selfish herd, dominant and agile animals should occupy the best positions and thereby receive fewer attacks compared to lower ranked animals at the periphery. We tested these predictions on reindeer (Rangifer tarandus tarandus) parasitized by warble flies (Hypoderma tarandi). Warble flies oviposit their eggs on reindeer during summer and induce strong anti-parasitic behavioural responses in the herds. In this period, reindeer are sexually segregated; females and calves form large and dense herds while males are more solitary. After hatching, the warble fly larvae migrate under the skin of their host where they encyst. In the present study encysted larvae were counted on newly slaughtered hides of male calves and 1.5 year old males from 18 different reindeer herds in Finnmark, northern Norway with large contrasts in reindeer density. In reindeer, body mass is correlated with fitness and social status and we hypothesized that individual carcass mass reflected the animal's ability to occupy the best positions within the herd. Larval abundance was higher among the 1.5 year old males than among the calves. For calves we found in accordance with the selfish herd hypothesis a negative relationship between larval abundance and animal density and between larval abundance and body mass. These relationships were absent for the 1.5 year old males. We suggest that these differences were due to different grouping behaviour where calves and females, but not males, aggregated in selfish herds where they escaped parasitism. [source]


Short-term effects of salt stress on antioxidant systems and leaf water relations of pea leaves

PHYSIOLOGIA PLANTARUM, Issue 2 2002
José A. Hernández
In pea (Pisum sativum L.) plants the effect of short-term salt stress and recovery on growth, water relations and the activity of some antioxidant enzymes was studied. Leaf growth was interrupted by salt addition. However, during recovery, growth was restored, although there was a delay in returning to control levels. Salt stress brought about a decrease in osmotic potential and in stomatal conductance, but at 48 h and 24 h post-stress, respectively, both parameters recovered control values. In pea leaves, a linear increase in the Na+ concentration was observed in salt treated plants. In the recovered plants, a slight reduction in the Na+ concentration was observed, probably due to a dilution effect since the plant growth was restored and the total Na+ content was maintined in leaves after the stress period. A significant increase of SOD activity occurred after 48 h of stress and after 8 h of the recovery period (53% and 42%, respectively), and it reached control values at 24 h post-stress. APX activity did not change during the stress period, and after only 8 h post-stress it was increased by 48% with respect to control leaves. GR showed a 71% increase after 24 h of salt stress and also a significant increase was observed in the recovered plants. A strong increase of TBARS was observed after 8 h of stress (180% increase), but then a rapid decrease was observed during the stress period. Surprisingly, TBARS again increased at 8 h post-stress (78% increase), suggesting that plants could perceive the elimination of NaCl from the hydroponic cultures as another stress during the first hours of recovery. These results suggest that short-term NaCl stress produces reversible effects on growth, leaf water relations and on SOD and APX activities. This work also suggests that both during the first hours of imposition of stress and during the first hours of recovery an oxidative stress was produced. [source]


Multifunctional Stretchable Plasma Polymer Modified PDMS Interface for Mechanically Responsive Materials

PLASMA PROCESSES AND POLYMERS, Issue 1 2010
Alexandre Geissler
Abstract New stretchable reactive surfaces are developed as platforms for the design of mechanically responsive materials. These surfaces are based on elastic PDMS elastomer substrates. Plasma polymerization leads to the attachment of reactive functionalities on the surface. We show that such functionalised PDMS surfaces exhibit pH-dependent acid-base properties due to the dicarboxylic acid groups. Both contact angle and force measurements highlight the dilution effect of the surface concentration of reactive groups induced by substrate elongation. We show, in particular, that the surfaces can be rendered antifouling by tailoring them with poly(ethylene glycol) (,=,2000) and that the antifouling strength depends upon the elongation of the substrate. [source]


Networks for recognition of biomolecules: molecular imprinting and micropatterning poly(ethylene glycol)- Containing films,

POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 10-12 2002
Mark E. Byrne
Abstract Engineering the molecular design of biomaterials by controlling recognition and specificity is the first step in coordinating and duplicating complex biological and physiological processes. Studies of protein binding domains reveal molecular architectures with specific chemical moieties that provide a framework for selective recognition of target biomolecules in aqueous environment. By matching functionality and positioning of chemical residues, we have been successful in designing biomimetic polymer networks that specifically bind biomolecules in aqueous environments. Our work addresses the preparation, behavior, and dynamics of the three-dimensional structure of biomimetic polymers for selective recognition via non-covalent complexation. In particular, the synthesis and characterization of recognitive gels for the macromolecular recognition of D -glucose is highlighted. Novel copolymer networks containing poly(ethylene glycol) (PEG) and functional monomers such as acrylic acid, 2-hydroxyethyl methacrylate, and acrylamide were synthesized in dimethyl sulfoxide (polar, aprotic solvent) and water (polar, protic solvent) via UV-free radical polymerization. Polymers were characterized by single and competitive equilibrium and kinetic binding studies, single and competitive fluorescent and confocal microscopy studies, dynamic network swelling studies, and ATR-FTIR. Results qualitatively and quantitatively demonstrate effective glucose-binding polymers in aqueous solvent. Owing to the presence of template, the imprinting process resulted in a more macroporous structure as exhibited by dynamic swelling experiments and confocal microscopy. Polymerization kinetic studies suggest that the template molecule has more than a dilution effect on the polymerization, and the effect of the template is related strongly to the rate of propagation. In addition, PEG containing networks were micropatterned to fabricate microstructures, which would be the basis for micro-diagnostic and tissue engineering devices. Utilizing photolithography techniques, polymer micropatterns of a variety of shapes and dimensions have been created on polymer and silicon substrates using UV free-radical polymerizations with strict spatial control. Micropatterns were characterized using optical microscopy, SEM, and profilometry. The processes and analytical techniques presented are applicable to other stimuli-sensitive and recognitive networks for biomolecules, in which hydrogen bonding, hydrophobic, or ionic contributions will direct recognition. Further developments are expected to have direct impact on applications such as analyte controlled and modulated drug and protein delivery, drug and biological elimination, drug targeting, tissue engineering, and micro- or nano-devices. This work is supported by NSF Grant DGE-99-72770. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Nutritional niche separation in coexisting bog species demonstrated by 15N-enriched simulated rainfall

AUSTRAL ECOLOGY, Issue 4 2009
BEVERLEY R. CLARKSON
Abstract Empodisma minus and Sporadanthus ferrugineus (both Restionaceae) coexist in New Zealand raised bogs, yet Sporadanthus have significantly more depleted 15N natural abundance signatures than coexisting Empodisma. Their root systems are spatially separated with Empodisma having a thick surface layer of about 50 mm of cluster roots overlying the deeper Sporadanthus roots. We hypothesized this root displacement allows Empodisma to preferentially access the primary N input from rainfall, thus establishing niche separation, and tested this using tracer stable isotopes. We aerially applied 1.6 mmol m,2 of 15N as (NH4)2SO4 chased by deionized water to simulate a rainfall event of 34 L m,2. Root/peat matrix cores were harvested after 5 h and analysed for 15N uptake. Approximately 80% of the tracer applied was recovered in the cores, with 90% of this recovered in the upper Empodisma cluster root layer. Seven weeks after application, young shoots of Empodisma were significantly enriched (mean ,15N = +7.21,; reference = ,0.42,), whereas those of coexisting Sporadanthus were not (mean ,15N = ,2.76,; reference = ,4.24,). However, we were unable to quantify the 15N uptake because of the dilution effect of the large biomass. We calculated the contribution of biological nitrogen fixation as a possible alternative source of N in achieving niche separation. The acetylene reduction assay showed minor amounts of nitrogenase activity are associated with Empodisma and Sporadanthus roots (equivalent to 0.045 ± 0.019 and 0.104 ± 0.017 kg N ha,1 year,1 respectively). Our results suggest that the species acquire nutrients from different rooting zones, with Empodisma accessing nutrients at the surface from rainfall and Sporadanthus accessing nutrients from mineralization in deeper peat layers. Such niche differentiation probably facilitates species coexistence and may provide a mechanism for slowing the rate of competitive displacement during long-term succession. [source]