Diguanylate Cyclase (diguanylate + cyclase)

Distribution by Scientific Domains

Terms modified by Diguanylate Cyclase

  • diguanylate cyclase activity

  • Selected Abstracts


    Unphosphorylated CsgD controls biofilm formation in Salmonella enterica serovar Typhimurium

    MOLECULAR MICROBIOLOGY, Issue 3 2010
    Katherina Zakikhany
    Summary The transcriptional regulator CsgD of Salmonella enterica serovar Typhimurium (S. Typhimurium) is a major regulator of biofilm formation required for the expression of csgBA, which encodes curli fimbriae, and adrA, coding for a diguanylate cyclase. CsgD is a response regulator with an N-terminal receiver domain with a conserved aspartate (D59) as a putative target site for phosphorylation and a C-terminal LuxR-like helix,turn,helix DNA binding motif, but the mechanisms of target gene activation remained unclear. To study the DNA-binding properties of CsgD we used electrophoretic mobility shift assays and DNase I footprint analysis to show that unphosphorylated CsgD-His6 binds specifically to the csgBA and adrA promoter regions. In vitro transcription analysis revealed that CsgD-His6 is crucial for the expression of csgBA and adrA. CsgD-His6 is phosphorylated by acetyl phosphate in vitro, which decreases its DNA-binding properties. The functional impact of D59 in vivo was demonstrated as S. Typhimurium strains expressing modified CsgD protein (D59E and D59N) were dramatically reduced in biofilm formation due to decreased protein stability and DNA-binding properties in the case of D59E. In summary, our findings suggest that the response regulator CsgD functions in its unphosphorylated form under the conditions of biofilm formation investigated in this study. [source]


    A cyclic-di-GMP receptor required for bacterial exopolysaccharide production

    MOLECULAR MICROBIOLOGY, Issue 6 2007
    Vincent T. Lee
    Summary Bis-(3,,5,)-cyclic-dimeric-guanosine monophosphate (c-di-GMP) has been shown to be a global regulatory molecule that modulates the reciprocal responses of bacteria to activate either virulence pathways or biofilm formation. The mechanism of c-di-GMP signal transduction, including recognition of c-di-GMP and subsequent phenotypic regulation, remain largely uncharacterized. The key components of these regulatory pathways are the various adaptor proteins (c-di-GMP receptors). There is compelling evidence suggesting that, in addition to PilZ domains, there are other unidentified c-di-GMP receptors. Here we show that the PelD protein of Pseudomonas aeruginosa is a novel c-di-GMP receptor that mediates c-di-GMP regulation of PEL polysaccharide biosynthesis. Analysis of PelD orthologues identified a number of conserved residues that are required for c-di-GMP binding as well as synthesis of the PEL polysaccharide. Secondary structure similarities of PelD to the inhibitory site of diguanylate cyclase suggest that a common fold can act as a platform to bind c-di-GMP. The combination of a c-di-GMP binding site with a variety of output signalling motifs within one protein domain provides an explanation for the specificity for different cellular responses to this regulatory dinucleotide. [source]


    Detergent-induced cell aggregation in subpopulations of Pseudomonas aeruginosa as a preadaptive survival strategy

    ENVIRONMENTAL MICROBIOLOGY, Issue 9 2007
    Janosch Klebensberger
    Summary During growth of Pseudomonas aeruginosa strain PAO1 with the toxic detergent SDS, a part of the population actively formed macroscopic cell aggregates while the other part grew as freely suspended cells. The physiological function of aggregation for growth with SDS was investigated. Three mutants growing with SDS without aggregation were isolated: the spontaneous mutant strain N and two mutants with transposon insertions in the psl operon for exopolysaccharide synthesis. SDS-induced aggregation in strain N but not in a pslJ mutant was restored by complementation with two genes encoding diguanylate cyclases responsible for synthesis of cyclic-di-guanosine monophosphate (c-di-GMP). By expressing a c-di-GMP-specific phosphodiesterase SDS-induced aggregation of strain PAO1 was reduced. Upon exposure to SDS in the presence of the uncoupler carbonyl cyanide chlorophenylhydrazone, the aggregating strains had ca. 500-fold higher survival rates than the non-aggregating strains. Co-incubation experiments revealed that strain N could integrate into aggregates of strain PAO1 and thereby increase its survival rate more than 1000-fold. These results showed that SDS-induced aggregation involved c-di-GMP signalling with the psl operon as a possible target. Cell aggregation could serve as a pre-adaptive strategy ensuring survival and growth of P. aeruginosa populations in environments with multiple toxic chemicals. [source]


    Analysis of FimX, a phosphodiesterase that governs twitching motility in Pseudomonas aeruginosa

    MOLECULAR MICROBIOLOGY, Issue 4 2006
    Barbara I. Kazmierczak
    Summary Type IV pili (Tfp) are polar surface structures of Pseudomonas aeruginosa required for twitching motility, biofilm formation and adherence. One protein required for the assembly of tfp is FimX, which possesses both GGDEF and EAL domains characteristic of diguanylate cyclases and phosphodiesterases respectively. In this work we demonstrate that FimX has phosphodiesterase activity towards bis-(3,-5,)-cyclic dimeric guanosine monophosphate (c-di-GMP), but does not show diguanylate cyclase activity. Instead, the imperfect GGDEF domain of FimX likely serves to activate phosphodiesterase activity when bound to GTP, as has recently been described for the Caulobacter crescentus composite GGDEF-EAL protein, CC3396. Bacteria expressing FimX in which either the GGDEF or EAL domain is deleted or mutated have phenotypes indistinguishable from a ,fimX strain, demonstrating the importance of both domains to function. Previous work has shown that FimX localizes to the bacterial pole. In this work we show that restriction of FimX to a single pole requires intact GGDEF and EAL domains. Deletion of the amino-terminal REC domain of FimX, which contains a putative polar localization signal, results in a protein that still supports intermediate levels of pilus assembly and function. RFP,FimX,REC, unlike RFP,FimX, is no longer localized to the bacterial pole, while transmission electron microscopy shows that surface pili can originate from non-polar sites in this mutant. Although ,fimX mutants show limited in vitro cytotoxicity, they are as virulent as the wild-type strain in a murine model of acute pneumonia. [source]