Dichroism Analysis (dichroism + analysis)

Distribution by Scientific Domains

Kinds of Dichroism Analysis

  • circular dichroism analysis


  • Selected Abstracts


    Synthesis and chiroptical properties of L -valine-containing poly(phenylacetylene)s with (a)chiral pendant terminal groups

    JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 6 2006
    Lo Ming Lai
    Abstract Poly(phenylacetylene)s containing L -valine residues (P1) with (a)chiral pendant terminal groups R(*) [,(HCC{C6H4CONHCH[CH(CH3)2]COOR(*)})n,]; R(*) = 1-octyl (P1o), (1S,2R,5S)-(+)-menthyl [P1(+)], (1R,2S,5R)-(,)-menthyl [P1(,)] are designed and synthesized. The polymers are prepared by organorhodium catalysts in high yields (yield up to 88%) with high molecular weights (Mw up to ,6.4 × 105). Their structures and properties are characterized by NMR, IR, TGA, UV, and circular dichroism analyses. All the polymers are thermally fairly stable (Td , 320 °C). The chiral moieties induce the poly(phenylacetylene) chains to helically rotate in a preferred direction. The chirality of the pendant terminal groups affects little the helicity of the polymers but their bulkiness stabilizes the helical conformation against solvent perturbation. The backbone conjugation and chain helicity of the polymers can be modulated continuously and reversibly by acid. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2117,2129, 2006 [source]


    Synthesis, characterization and in vivo activity of salmon calcitonin coconjugated with lipid and polyethylene glycol

    JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 4 2009
    Weiqiang Cheng
    Abstract An irreversible lipidized salmon calcitonin (sCT) analog, Mal-sCT, was previously shown to have comparable hypocalcemic activity to sCT in vivo. This study reports on the synthesis, characterization and pharmacological activity of novel PEGylated Mal-sCT analogs. Mal-sCT, prepared by conjugating sCT via thio-ether bonds with aqueous-soluble palmitic acid derivative at Cys 1 and Cys 7, was reacted with mPEG-succinimide (mPEG-Suc, 5 kDa). The products were purified and then identified by MALDI-TOF MS and HPLC. Mal-sCT was conjugated with 1 (1PEG-Mal-sCT) or 2 (2PEG-Mal-sCT) PEG chains at Lys 11 and Lys 18, the former being the preferred site of conjugation at higher mPEG-Suc/Mal-sCT ratio. Circular dichroism analysis showed the PEGylated Mal-sCT analogs to possess a robust helical conformation, while size measurement by dynamic light scattering indicated a propensity of the peptides to self-aggregate in aqueous solutions. Both 1PEG-Mal-sCT and 2PEG-Mal-sCT were more stable in rodent intestinal fluids than sCT or Mal-sCT. However, 1PEG-Mal-sCT had comparable hypocalcemic activity to Mal-sCT when injected subcutaneously in the rat, while 2PEG-Mal-sCT was inactive. 1PEG-Mal-sCT was inactive when administered orally in the rat. This study suggested PEGylation of Mal-sCT increased the stability of the lipidized peptide to enzyme degradation, but did not enhance its hypocalcemic activity. © 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:1438,1451, 2009 [source]


    Reducing allergenicity by altering allergen fold: a mosaic protein of Phl p 1 for allergy vaccination

    ALLERGY, Issue 4 2009
    T. Ball
    Background:, The major timothy grass pollen allergen, Phl p 1, resembles the allergenic epitopes of natural group I grass pollen allergens and is recognized by more than 95% of grass-pollen-allergic patients. Our objective was the construction, purification and immunologic characterization of a genetically modified derivative of the major timothy grass pollen allergen, Phl p 1 for immunotherapy of grass pollen allergy. Methods:, A mosaic protein was generated by PCR-based re-assembly and expression of four cDNAs coding for Phl p 1 fragments and compared to the Phl p 1 wild-type by circular dichroism analysis, immunoglobulin E (IgE)-binding capacity, basophil activation assays and enzyme-linked immunosorbent assay competition assays. Immune responses to the derivative were studied in BALB/c mice. Results:, Grass-pollen-allergic patients exhibited greater than an 85% reduction in IgE reactivity to the mosaic as compared with the Phl p 1 allergen and basophil activation experiments confirmed the reduced allergenic activity of the mosaic. It also induced less Phl p 1-specific IgE antibodies than Phl p 1 upon immunization of mice. However, immunization of mice and rabbits with the mosaic induced IgG antibodies that inhibited patients' IgE-binding to the wild-type allergen and Phl p 1-induced degranulation of basophils. Conclusion:, We have developed a strategy based on rational molecular reassembly to convert one of the clinically most relevant allergens into a hypoallergenic derivative for allergy vaccination. [source]


    Resolution of ligand positions by site-directed tryptophan fluorescence in tear lipocalin

    PROTEIN SCIENCE, Issue 2 2000
    Oktay K. Gasymov
    Abstract The lipocalin superfamily of proteins functions in the binding and transport of a variety of important hydrophobic molecules. Tear lipocalin is a promiscuous lipid binding member of the family and serves as a paradigm to study the molecular determinants of ligand binding. Conserved regions in the lipocalins, such as the G strand and the F-G loop, may play an important role in ligand binding and delivery. We studied structural changes in the G strand of holo- and apo-tear lipocalin using spectroscopic methods including circular dichroism analysis and site-directed tryptophan fluorescence. Apo-tear lipocalin shows the same general structural characteristics as holo-tear lipocalin including alternating periodicity of a ,-strand, orientation of amino acid residues 105, 103, 101, and 99 facing the cavity, and progressive depth in the cavity from residues 105 to 99. For amino acid residues facing the internal aspect of cavity, the presence of a ligand is associated with blue shifted spectra. The collisional rate constants indicate that these residues are not less exposed to solvent in holo-tear lipocalin than in apo-tear lipocalin. Rather the spectral blue shifts may be accounted for by a ligand induced rigidity in holo-TL. Amino acid residues 94 and 95 are consistent with positions in the F-G loop and show greater exposure to solvent in the holo- than the apo-proteins. These findings are consistent with the general hypothesis that the F-G loop in the holo-proteins of the lipocalin family is available for receptor interactions and delivery of ligands to specific targets. Site-directed tryptophan fluorescence was used in combination with a nitroxide spin labeled fatty acid analog to elucidate dynamic ligand interactions with specific amino acid residues. Collisional quenching constants of the nitroxide spin label provide evidence that at least three amino acids of the G strand residues interact with the ligand. Stern-Volmer plots are inconsistent with a ligand that is held in a static position in the calyx, but rather suggest that the ligand is in motion. The combination of site-directed tryptophan fluorescence with quenching by nitroxide labeled species has broad applicability in probing specific interactions in the solution structure of proteins and provides dynamic information that is not attainable by X-ray crystallography. [source]