Home About us Contact | |||
Developmental Programme (developmental + programme)
Selected AbstractsThe evolution of teleost pigmentation and the fish-specific genome duplicationJOURNAL OF FISH BIOLOGY, Issue 8 2008I. Braasch Teleost fishes have evolved a unique complexity and diversity of pigmentation and colour patterning that is unmatched among vertebrates. Teleost colouration is mediated by five different major types of neural-crest derived pigment cells, while tetrapods have a smaller repertoire of such chromatophores. The genetic basis of teleost colouration has been mainly uncovered by the cloning of pigmentation genes in mutants of zebrafish Danio rerio and medaka Oryzias latipes. Many of these teleost pigmentation genes were already known as key players in mammalian pigmentation, suggesting partial conservation of the corresponding developmental programme among vertebrates. Strikingly, teleost fishes have additional copies of many pigmentation genes compared with tetrapods, mainly as a result of a whole-genome duplication that occurred 320,350 million years ago at the base of the teleost lineage, the so-called fish-specific genome duplication. Furthermore, teleosts have retained several duplicated pigmentation genes from earlier rounds of genome duplication in the vertebrate lineage, which were lost in other vertebrate groups. It was hypothesized that divergent evolution of such duplicated genes may have played an important role in pigmentation diversity and complexity in teleost fishes, which therefore not only provide important insights into the evolution of the vertebrate pigmentary system but also allow us to study the significance of genome duplications for vertebrate biodiversity. [source] The ,-1,3-glucanosyltransferase gas4p is essential for ascospore wall maturation and spore viability in Schizosaccharomyces pombeMOLECULAR MICROBIOLOGY, Issue 5 2008Marķa De Medina-Redondo Summary Meiosis is the developmental programme by which sexually reproducing diploid organisms generate haploid gametes. In yeast, meiosis is followed by spore morphogenesis. The formation of the Schizosaccharomyces pombe ascospore wall requires the co-ordinated activity of enzymes involved in the biosynthesis and modification of its components, such as glucans. During sporogenesis, the ,-1,3-glucan synthase bgs2p synthesizes linear ,-1,3-glucans, which remain unorganized and alkali-soluble until covalent linkages are set up between ,-1,3-glucans and other cell wall components. Several proteins belonging to the glycoside hydrolase family 72 (GH72) with ,-1,3-glucanosyltransferase activity have been described in other organisms, such as the Saccharomyces cerevisiae Gas1p or the Aspergillus fumigatus Gel1p. Here we describe the characterization of gas4+, a new gene that encodes a protein of the GH72 family. Deletion of this gene does not lead to any apparent defect during vegetative growth, but homozygous gas4, diploids show a sporulation defect. Although meiosis occurs normally, ascospores are unable to mature or to germinate. The expression of gas4+ is strongly induced during sporulation and a yellow fluorescent protein (YFP),gas4p fusion protein localizes to the ascospore periphery during sporulation. We conclude that gas4p is required for ascospore maturation in S. pombe. [source] Getting down to malarial nuts and bolts: the interaction between Plasmodium vivax merozoites and their host erythrocytesMOLECULAR MICROBIOLOGY, Issue 5 2005Julian Rayner Summary Of the four Plasmodium species that routinely cause malaria in humans, Plasmodium falciparum is responsible for the majority of malaria mortality and consequently gets most of the headlines. Outside Africa, however, more malaria cases are caused by its distant cousin Plasmodium vivax, resulting in a daunting morbidity and economic burden for countries across Asia and the Americas. Plasmodium life cycles are complex, but the symptoms and pathology of malaria occur during the blood phase, when merozoites recognize and invade erythrocytes, initiating a developmental programme that culminates in lysis of the erythrocyte and release of multiple daughter merozoites. P. vivax merozoites are dependent on a single host cell receptor for erythrocyte invasion, the Duffy antigen receptor for chemokines, and humans that do not express this receptor on the surface of their erythrocytes are immune to P. vivax infection. This essential receptor,ligand interaction is addressed from both the host and parasite side in two papers in this issue of Molecular Microbiology, with important implications for plans to develop a P. vivax vaccine. [source] Chlamydospore formation in Candida albicans and Candida dubliniensis, an enigmatic developmental programmeMYCOSES, Issue 1 2007Peter Staib Summary Chlamydospore formation has served for a long time for identification of the human fungal pathogen Candida albicans, but the biological function of these structures still remains a secret. They have been proposed to allow survival in harsh environmental conditions, but this assumption remains to be proven. Chlamydospores are produced only by the two closely related species C. albicans and Candida dubliniensis, whose natural habitats are humans and warm-blooded animals, but not by other Candida species that are also found outside animal hosts. However, no role in the pathogenesis of Candida infections has been assigned to these unusual cells and only a limited number of studies have been conducted in the past to unravel their function. The development of new molecular tools and the recent discovery of mating in C. albicans have also restimulated investigations to understand the morphogenesis and function of chlamydospores. The finding that chlamydospore formation is differentially controlled by certain environmental signals in C. albicans and C. dubliniensis has opened new approaches to study the regulation of this morphogenetic programme. These studies have already identified genes and signalling pathways that are required for chlamydospore production and should lead to a detailed understanding of this fascinating developmental process. [source] Reduced rates of axonal and dendritic growth in embryonic hippocampal neurones cultured from a mouse model of Sandhoff diseaseNEUROPATHOLOGY & APPLIED NEUROBIOLOGY, Issue 4 2003D. Pelled Sandhoff disease is a lysosomal storage disease in which ganglioside GM2 accumulates because of a defective ,-subunit of ,-hexosaminidase. This disease is characterized by neurological manifestations, although the pathogenic mechanisms leading from GM2 accumulation to neuropathology are largely unknown. We now examine the viability, development and rates of neurite growth of embryonic hippocampal neurones cultured from a mouse model of Sandhoff disease, the Hexb,/, mouse. GM2 was detected by metabolic labelling at low levels in wild type (Hexb+/+) neurones, and increased by approximately three-fold in Hexb,/, neurones. Hexb,/, hippocampal neurones were as viable as their wild type counterparts and, moreover, their developmental programme was unaltered because the formation of axons and of the minor processes which eventually become dendrites was similar in Hexb,/, and Hexb+/+ neurones. In contrast, once formed, a striking difference in the rate of axonal and minor process growth was observed, with changes becoming apparent after 3 days in culture and highly significant after 5 days in culture. Analysis of various parameters of axonal growth suggested that a key reason for the decreased rate of axonal growth was because of a decrease in the formation of collateral axonal branches, the major mechanism by which hippocampal axons elongate in culture. Thus, although the developmental programme with respect to axon and minor process formation and the viability of hippocampal neurones are unaltered, a significant decrease occurs in the rate of axonal and minor process growth in Hexb,/, neurones. These results appear to be in contrast to dorsal root ganglion neurones cultured from 1-month-old Sandhoff mice, in which cell survival is impaired but normal outgrowth of neurones occurs. The possible reasons for these differences are discussed. [source] Extrinsic versus intrinsic cues in avian paraxial mesoderm patterning and differentiationDEVELOPMENTAL DYNAMICS, Issue 9 2007Ingo Bothe Abstract Somitic and head mesoderm contribute to cartilage and bone and deliver the entire skeletal musculature. Studies on avian somite patterning and cell differentiation led to the view that these processes depend solely on cues from surrounding tissues. However, evidence is accumulating that some developmental decisions depend on information within the somitic tissue itself. Moreover, recent studies established that head and somitic mesoderm, though delivering the same tissue types, are set up to follow their own, distinct developmental programmes. With a particular focus on the chicken embryo, we review the current understanding of how extrinsic signalling, operating in a framework of intrinsically regulated constraints, controls paraxial mesoderm patterning and cell differentiation. Developmental Dynamics 236:2397,2409, 2007. © 2007 Wiley-Liss, Inc. [source] Identification of Lmo1 as part of a Hox-dependent regulatory network for hindbrain patterningDEVELOPMENTAL DYNAMICS, Issue 9 2007Christelle Matis Abstract The embryonic functions of Hox proteins have been extensively investigated in several animal phyla. These transcription factors act as selectors of developmental programmes, to govern the morphogenesis of multiple structures and organs. However, despite the variety of morphogenetic processes Hox proteins are involved in, only a limited set of their target genes has been identified so far. To find additional targets, we used a strategy based upon the simultaneous overexpression of Hoxa2 and its cofactors Pbx1 and Prep in a cellular model. Among genes whose expression was upregulated, we identified LMO1, which codes for an intertwining LIM-only factor involved in protein,DNA oligomeric complexes. By analysing its expression in Hox knockout mice, we show that Lmo1 is differentially regulated by Hoxa2 and Hoxb2, in specific columns of hindbrain neuronal progenitors. These results suggest that Lmo1 takes part in a Hox paralogue 2,dependent network regulating anteroposterior and dorsoventral hindbrain patterning. Developmental Dynamics 236:2675,2684, 2007. © 2007 Wiley-Liss, Inc. [source] Microarray expression profiling: capturing a genome-wide portrait of the transcriptomeMOLECULAR MICROBIOLOGY, Issue 4 2003Tyrrell Conway Summary The bacterial transcriptome is a dynamic entity that reflects the organism's immediate, ongoing and genome-wide response to its environment. Microarray expression profiling provides a comprehensive portrait of the transcriptional world enabling us to view the organism as a ,system' that is more than the sum of its parts. The vigilance of microorganisms to environmental change, the alacrity of the transcriptional response, the short half-life of bacterial mRNA and the genome-scale nature of the investigation collectively explain the power of this method. These same features pose the most significant experimental design and execution issues which, unless surmounted, predictably generate a distorted image of the transcriptome. Conversely, the expression profile of a properly conceived and conducted microarray experiment can be used for hypothesis testing: disclosure of the metabolic and biosynthetic pathways that underlie adaptation of the organism to chang-ing conditions of growth; the identification of co-ordinately regulated genes; the regulatory circuits and signal transduction systems that mediate the adaptive response; and temporal features of developmental programmes. The study of bacterial pathogenesis by microarray expression profiling poses special challenges and opportunities. Although the technical hurdles are many, obtaining expression profiles of an organism growing in tissue will probably reveal strategies for growth and survival in the host's microenvironment. Identifying these colonization strategies and their cognate expression patterns involves a ,deconstruction' process that combines bioinformatics analysis and in vitro DNA array experimentation. [source] |