Home About us Contact | |||
Developmental Cycle (developmental + cycle)
Selected AbstractsWidespread occurrence of an intranuclear bacterial parasite in vent and seep bathymodiolin musselsENVIRONMENTAL MICROBIOLOGY, Issue 5 2009Frank U. Zielinski Summary Many parasitic bacteria live in the cytoplasm of multicellular animals, but only a few are known to regularly invade their nuclei. In this study, we describe the novel bacterial parasite "Candidatus Endonucleobacter bathymodioli" that invades the nuclei of deep-sea bathymodiolin mussels from hydrothermal vents and cold seeps. Bathymodiolin mussels are well known for their symbiotic associations with sulfur- and methane-oxidizing bacteria. In contrast, the parasitic bacteria of vent and seep animals have received little attention despite their potential importance for deep-sea ecosystems. We first discovered the intranuclear parasite "Ca. E. bathymodioli" in Bathymodiolus puteoserpentis from the Logatchev hydrothermal vent field on the Mid-Atlantic Ridge. Using primers and probes specific to "Ca. E. bathymodioli" we found this intranuclear parasite in at least six other bathymodiolin species from vents and seeps around the world. Fluorescence in situ hybridization and transmission electron microscopy analyses of the developmental cycle of "Ca. E. bathymodioli" showed that the infection of a nucleus begins with a single rod-shaped bacterium which grows to an unseptated filament of up to 20 ,m length and then divides repeatedly until the nucleus is filled with up to 80 000 bacteria. The greatly swollen nucleus destroys its host cell and the bacteria are released after the nuclear membrane bursts. Intriguingly, the only nuclei that were never infected by "Ca. E. bathymodioli" were those of the gill bacteriocytes. These cells contain the symbiotic sulfur- and methane-oxidizing bacteria, suggesting that the mussel symbionts can protect their host nuclei against the parasite. Phylogenetic analyses showed that the "Ca. E. bathymodioli" belongs to a monophyletic clade of Gammaproteobacteria associated with marine metazoans as diverse as sponges, corals, bivalves, gastropods, echinoderms, ascidians and fish. We hypothesize that many of the sequences from this clade originated from intranuclear bacteria, and that these are widespread in marine invertebrates. [source] Biochemical and molecular characterization of a laccase from the edible straw mushroom, Volvariella volvaceaFEBS JOURNAL, Issue 2 2004Shicheng Chen We have isolated a laccase (lac1) from culture fluid of Volvariella volvacea, grown in a defined medium containing 150 µm CuSO4, by ion-exchange and gel filtration chromatography. Lac1 has a molecular mass of 58 kDa as determined by SDS/PAGE and an isoelectric point of 3.7. Degenerate primers based on the N-terminal sequence of purified lac1 and a conserved copper-binding domain were used to generate cDNA fragments encoding a portion of the lac1 protein and RACE was used to obtain full-length cDNA clones. The cDNA of lac1 contained an ORF of 1557 bp encoding 519 amino acids. The amino acid sequence from Ala25 to Asp41 corresponded to the N-terminal sequence of the purified protein. The first 24 amino acids are presumed to be a signal peptide. The expression of lac1 is regulated at the transcription level by copper and various aromatic compounds. RT-PCR analysis of gene transcription in fungal mycelia grown on rice-straw revealed that, apart from during the early stages of substrate colonization, lac1 was expressed at every stage of the mushroom developmental cycle defined in this study, although the levels of transcription varied considerably depending upon the developmental phase. Transcription of lac1 increased sharply during the latter phase of substrate colonization and reached maximum levels during the very early stages (primordium formation, pinhead stage) of fruit body morphogenesis. Gene expression then declined to ,,20,30% of peak levels throughout the subsequent stages of sporophore development. [source] Chlamydiae and polymorphonuclear leukocytes: unlikely allies in the spread of chlamydial infectionFEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 1 2008Roger G. Rank Abstract While much is known about the attachment of the chlamydiae to the host cell and intracellular events during the developmental cycle, little is known about the mechanism(s) by which elementary bodies exit the cell. In this report, we use the guinea-pig conjunctival model of Chlamydia caviae infection to present in vivo ultrastructural evidence supporting two mechanisms for release of chlamydiae from the mucosal epithelia. Four days after infection, histopathologic observation shows an intense infiltration of polymorphonuclear leukocytes (PMN) in the conjunctival epithelium. Using transmission electron microscopy, a gradient-directed PMN response to chlamydiae-infected epithelial cells was observed. As PMN infiltration intensifies, epithelial hemidesmosome/integrin/focal adhesion adherence with the basal lamina is disconnected and PMNs literally lift off and release infected superficial epithelia from the mucosa. Many of these infected cells appear to be healthy with intact microvilli, nuclei, and mitochondria. While lysis of some infected cells occurs with release of chlamydiae into the extracellular surface milieu, the majority of infected cells are pushed off the epithelium. We propose that PMNs play an active role in detaching infected cells from the epithelium and that these infected cells eventually die releasing organisms but, in the process, move to new tissue sites via fluid dynamics. [source] Productive Chlamydia trachomatis lymphogranuloma venereum 434 infection in cells with augmented or inactivated autophagic activitiesFEMS MICROBIOLOGY LETTERS, Issue 2 2009Niseema Pachikara Abstract Autophagy, a eukaryotic cellular activity leading to the degradation of cellular components, serves as a defense mechanism against facultative intracellular bacteria as well as a growth niche for the obligate intracellular bacterium Coxiella burnetii. We here demonstrate that the obligate intracellular bacterial pathogen Chlamydia trachomatis lymphogranuloma venereum strongly induced autophagy in the middle of the chlamydial developmental cycle (24 h after infection), a time point with maximal level of chlamydial replication, but not during the early stages with low overall chlamydial metabolism (before 8 h). No autophagy induction was evident in cells exposed to heat- and UV-inactivated elementary bodies (EBs, the infectious form of Chlamydia) or to inocula from which EBs had been removed before inoculation. Blocking chlamydial development with chloramphenicol also prevented autophagy induction in cells infected with infectious EBs. It appears that autophagy is activated primarily in response to the metabolic stress consequent to chlamydial replication. However, autophagy-defective ATG5,/, cells supported chlamydial development as efficiently as autophagy-proficient ATG5+/+ cells. [source] Dynamics of experimental production of Thelohanellus hovorkai (Myxozoa: Myxosporea) in fish and oligochaete alternate hostsJOURNAL OF FISH DISEASES, Issue 10 2003Y S Liyanage Abstract The dynamics of development and production of Thelohanellus hovorkai (Myxozoa) were examined to investigate factors inducing haemorrhagic thelohanellosis in carp, Cyprinus carpio L. Fresh actinospores of T. hovorkai were harvested from the oligochaete alternate host, Branchiura sowerbyi, and used for infection experiments with myxosporean-free carp. Visualization of actinospores by fluorescent labelling revealed that sporoplasms penetrated the gill filaments of carp immersed in an actinospore suspension as early as 30 min post-exposure (PE). Plasmodia of T. hovorkai developed in the connective tissues of various organs and matured 3,5 weeks PE; dispersion of myxospores from degenerate plasmodia occurred 5,7 weeks PE. Challenges with a high dose of actinospores (4.5 × 106 spores per fish) resulted in the onset of disease, which was more easily achieved by the oral intubation of actinospores than by immersion in an actinospore suspension. Actinosporean-free B. sowerbyi were exposed to different densities of myxospores (104,106 spores per oligochaete) and subsequently reared at different temperatures (15, 20, 25 °C). At 20 and 25 °C, actinospore releases were first detected 40,43 days PE, with multiple peaks of release (max. 7 × 105 actinospores day,1) during the next 60 days. We concluded that the developmental cycle of T. hovorkai was completed within 3,5 months at 20,25 °C, and that the ingestion of large numbers of actinospores orally, possibly by feeding on infected oligochaetes, resulted in a disease condition in carp. [source] FliL is essential for swarming: motor rotation in absence of FliL fractures the flagellar rod in swarmer cells of Salmonella entericaMOLECULAR MICROBIOLOGY, Issue 2 2008Ursula Attmannspacher Summary fliL is the first gene in a flagellar operon that specifies members of the switch complex and type III export system in Salmonella enterica and Escherichia coli, but no function has been ascribed to this gene thus far. Here we report that a fliL mutant is slightly impaired for swimming but completely defective in swarming in both organisms, and have studied this phenotype further in S. enterica. We have found that on swarm agar, mutant cells release or ,eject' their flagellar filaments. The released filaments are attached to the hook and part of the rod structure; we have identified the distal rod protein FlgG but not the proximal rod protein FlgF in these filaments. Rod fracture was not observed if flagellar rotation was prevented by removal of proteins that supply proton flow through the motor. Based on these and other results, we propose that motors experience a higher torque on swarm agar owing to an increased proton motive force, and that FliL allows the rod to withstand the increased torsional stress. The flagella-release phenotype of the S. enterica fliL mutant has a bearing on FliL-dependent flagellar ejection during the swimmer- to stalk-cell transition in the developmental cycle of Caulobacter crescentus. [source] Characterization and functional analysis of PorB, a Chlamydia porin and neutralizing targetMOLECULAR MICROBIOLOGY, Issue 4 2000Aya Kubo A predicted protein (CT713) with weak sequence similarity to the major outer membrane protein (20.4% identity) in Chlamydia trachomatis was identified by Chlamydia genome analysis. We show that this protein is expressed, surface accessible, localized to the chlamydial outer membrane complex and functions as a porin. This protein, PorB, was highly conserved among different serovars, with nearly identical sequences between serovars D, B, C and L2. Sequence comparison between C. trachomatis and Chlamydia pneumoniae showed less conservation between species with 59.3% identity. Immunofluorescence staining with monospecific antisera to purified PorB revealed antigen localized within chlamydial inclusions and found throughout the developmental cycle. Antibodies to PorB neutralized infectivity of C. trachomatis in an in vitro neutralization assay confirming that PorB is surface exposed. As PorB was found to be in the outer membrane, as well as having weak structural characteristics similar to major outer membrane protein (MOMP) and other porins, a liposome-swelling assay was used to determine whether this protein had pore-forming capabilities. PorB had pore-forming activity and was shown to be different from MOMP porin activity. [source] Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycleMOLECULAR MICROBIOLOGY, Issue 4 2000E. I. Shaw The obligate intracellular bacterium Chlamydia trachomatis has a unique developmental cycle that involves functionally and morphologically distinct cell types adapted for extracellular survival and intracellular multiplication. Infection is initiated by an environmentally resistant cell type called an elementary body (EB). Over the first several hours of infection, EBs differentiate into a larger replicative form, termed the reticulate body (RB). Late in the infectious process, RBs asynchronously begin to differentiate back to EBs, which accumulate within the lumen of the inclusion until released from the host cell for subsequent rounds of infection. In an effort to characterize temporal gene expression in relation to the chlamydial developmental cycle, we have used quantitative,competitive polymerase chain reaction (QC-PCR) and reverse transcription (RT)-PCR techniques. These analyses demonstrate that C. trachomatis double their DNA content every 2,3 h, with synthesis beginning between 2 and 4 h after infection. We determined the onset of transcription of specific temporal classes of developmentally expressed genes. RT-PCR analysis was performed on several genes encoding key enzymes or components of essential biochemical pathways and functions. This comparison encompassed approximately 8% of open reading frames on the C. trachomatis genome. In analysis of total RNA samples harvested at 2, 6, 12 and 20 h after infection, using conditions under which a single chlamydial transcript per infected cell is detected, three major temporal classes of gene expression were resolved. Initiation of transcription appears to occur in three temporal classes which we have operationally defined as: early, which are detected by 2 h after infection during the germination of EBs to RBs; mid-cycle, which appear between 6 and 12 h after infection and represent transcripts expressed during the growth and multiplication of RBs; or late, which appear between 12 and 20 h after infection and represent those genes transcribed during the terminal differentiation of RBs to EBs. Collectively, the data suggest that chlamydial early gene functions are weighted toward initiation of macromolecular synthesis and the establishment of their intracellular niche by modification of the inclusion membrane. Surprisingly, representative enzymes of intermediary metabolism and structural proteins do not appear to be transcribed until 10,12 h after infection; coinciding with the onset of observed binary fission of RBs. Late gene functions appear to be predominately those associated with the terminal differentiation of RBs back to EBs. [source] Fruit load and elevation affect ethylene biosynthesis and action in apple fruit (Malus domestica L. Borkh) during development, maturation and ripeningPLANT CELL & ENVIRONMENT, Issue 11 2007VALERIANO DAL CIN ABSTRACT The influence of internal and external factors such as tree fruit load and elevation on ethylene biosynthesis and action was assessed during apple fruit development and ripening. Ethylene biosynthesis, as well as transcript accumulation of the hormone biosynthetic enzymes (MdACS1 and MdACO1), receptors (MdETR1 and MdERS1) and an element of the transduction pathway (MdCTR1), were evaluated in apples borne by trees with high (HL) and low (LL) fruit load. Orchards were located in two localities differing in elevation and season day degree sum. These parameters significantly affected the date of bloom and commercial harvest, and the length of the fruit developmental cycle. Trees from the low elevation (LE) bloomed and the fruit ripened earlier than those from the high elevation (HE), displaying also a shortened fruit developmental cycle. Dynamics of ethylene evolution was apparently not affected by elevation. The onset of ethylene evolution started 130 days after bloom (DAB) at both elevations. During early ripening, fruits from LL trees produced significantly more ethylene than those from HL trees. Expression analysis of MdACS1, MdACO1 and MdERS1 indicated that the transcript accumulation well correlated with ethylene evolution. MdCTR1 was expressed at constant level throughout fruit growth and development up to 130 DAB, thereafter, the transcript accumulation decreased up to commercial harvest, concurrently with the onset of ethylene evolution. [source] Dynamics in Central European near-natural Abies-Fagus forests: Does the mosaic-cycle approach provide an appropriate model?JOURNAL OF VEGETATION SCIENCE, Issue 2 2008Rafat Podlaski Abstract Question: The mosaic-cycle concept of forest dynamics dominates in Central Europe. According to this concept intermediate-scale disturbances only accelerate the forest break-up under existing cycles of forest development. Is such an approach correct, or should new developmental cycles be elaborated for intermediate-scale disturbances? Location: Near-natural Abies alba - Fagus sylvatica forests in the ,wiétokrzyski National Park in Central Poland. In these forests intermediate-scale disturbances occurred between 1970 and 1990. Methods: Data were collected twice in areas surrounding 212 permanent sample points (in 1994 and 2004). Two increment cores were taken from 259 sample Abies trees. The effect of intermediate-scale disturbances on radial increment of Abies was assessed. Probabilities of stand transition during a 10-year period between individual stages and phases of development of the mixed forest were calculated. The development stages and phases were arranged into hypothetical succession series of successive changes. Results: In 1994 70 stands and in 2004, 47 stands representing stages and phases containing the older generation formed by trees > 100,150 years were found. Also, in 1994 142 and in 2004, 165 stands representing stages and phases containing the younger generations only, formed by trees < 100-150 years, were recorded. Stages and phases containing only younger generations do not occur in the existing forest development cycle which does not consider the influence of intermediate-scale disturbances separately. Two developmental cycles, which take into account the presence of the older generation and the younger generations only (under conditions of the occurrence of intermediate-scale disturbances), are proposed. Conclusion: The mosaic-cycle concept of forest dynamics can be used to analyse the dynamics of Central European near-natural mixed-species forests, but new developmental cycles should be elaborated for intermediate-scale disturbances. [source] Outside the Moral Economy?THE AUSTRALIAN JOURNAL OF ANTHROPOLOGY, Issue 2 2007Single Female Migrants, the Changing Bangladeshi Family Unmarried female migrants, travelling overseas for work, form a small proportion of Bangladeshi overseas migrants. Their situation is anomalous and suspect, since unmarried women should remain at home under male protection and control. The stories of Dipti, a single woman who migrated to Australia in the 1980s, and of two other single women from her native village, demonstrate clearly some of the contradictions of these women's lives. Like other single female migrants I knew, Dipti retained close links to kin in Bangladesh, contributing significantly to the income of parents and siblings back home. Indeed, her constant and generous gift-giving can be understood as an attempt to counter her anomalous position and remain part of the moral economy of the village. However, Dipti's longing to remain part of an ,ideal' extended family conflicted with her relatives' desire for autonomy. This is because families in Bangladesh were themselves changing over this period, due to the intersection of the developmental cycles of domestic groups, dispositions towards the autonomy of children from their parents and each other, and through the economic pressures of contemporary Bangladeshi society, which provide a strong further impetus towards the financial autonomy of the nuclear family. These changes within the structure of their families result in alienating further these single female migrants. Thus, ultimately, both Dipti's attempts to maintain her extended family in Bangladesh and her efforts to recreate it in Australia were doomed to failure. The brief stories of the other two single women I use in the article are parallel to that of Dipti's. [source] Paranucleospora theridion n. gen., n. sp. (Microsporidia, Enterocytozoonidae) with a Life Cycle in the Salmon Louse (Lepeophtheirus salmonis, Copepoda) and Atlantic Salmon (Salmo salar)THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 2 2010STIAN NYLUND ABSTRACT. Paranucleospora theridion n. gen, n. sp., infecting both Atlantic salmon (Salmo salar) and its copepod parasite Lepeophtheirus salmonis is described. The microsporidian exhibits nuclei in diplokaryotic arrangement during all known life-cycle stages in salmon, but only in the merogonal stages and early sporogonal stage in salmon lice. All developmental stages of P. theridion are in direct contact with the host cell cytoplasm or nucleoplasm. In salmon, two developmental cycles were observed, producing spores in the cytoplasm of phagocytes or epidermal cells (Cycle-I) and in the nuclei of epidermal cells (Cycle-II), respectively. Cycle-I spores are small and thin walled with a short polar tube, and are believed to be autoinfective. The larger oval intranuclear Cycle-II spores have a thick endospore and a longer polar tube, and are probably responsible for transmission from salmon to L. salmonis. Parasite development in the salmon louse occurs in several different cell types that may be extremely hypertrophied due to P. theridion proliferation. Diplokaryotic merogony precedes monokaryotic sporogony. The rounded spores produced are comparable to the intranuclear spores in the salmon in most aspects, and likely transmit the infection to salmon. Phylogenetic analysis of P. theridion partial rDNA sequences place the parasite in a position between Nucleospora salmonis and Enterocytozoon bieneusi. Based on characteristics of the morphology, unique development involving a vertebrate fish as well as a crustacean ectoparasite host, and the results of the phylogenetic analyses it is suggested that P. theridion should be given status as a new species in a new genus. [source] |