Developing Technology (developing + technology)

Distribution by Scientific Domains


Selected Abstracts


The role of medical simulation: an overview,

THE INTERNATIONAL JOURNAL OF MEDICAL ROBOTICS AND COMPUTER ASSISTED SURGERY, Issue 3 2006
Kevin Kunkler
Abstract Robotic surgery and medical simulation have much in common: both use a mechanized interface that provides visual "patient" reactions in response to the actions of the health care professional (although simulation also includes touch feedback); both use monitors to visualize the progression of the procedure; and both use computer software applications through which the health care professional interacts. Both technologies are experiencing rapid adoption and are viewed as modalities that allow physicians to perform increasingly complex minimally invasive procedures while enhancing patient safety. A review of the literature and industry developments concludes that medical simulators can be useful tools in determining a physician's understanding and use of best practices, management of patient complications, appropriate use of instruments and tools, and overall competence in performing procedures. Future use of these systems depends on their impact on patient safety, procedure completion time and cost efficiency. The sooner simulation training can be used to support developing technologies and procedures, the earlier, and typically the better, the results. Continued studies are needed to identify and ensure the ongoing applicability of these systems for both training and certification. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Accessing other people's technology for non,profit research

AUSTRALIAN JOURNAL OF AGRICULTURAL & RESOURCE ECONOMICS, Issue 3 2002
Carol Nottenburg
As patents and other forms of intellectual property become more pervasive in the next generation of biotechnologies, designing policies and practices to ensure sufficient freedom to operate (i.e., the ability to practice or use an innovation) will be crucial for non,profit research agencies, especially those intent on developing technologies destined for commercial release. Are non,profit organisations exempt from intellectual property claims? What constitutes infringement of a patent? How does a non,profit establish its freedom to operate? We address these issues in this paper and evaluate various options for accessing other people's technologies. Options include cross,licensing agreements, research,only or cost,free licences, market segmentation strategies, mergers or joint ventures, and patent pooling or clearinghouse mechanisms. Responding creatively to the new intellectual property environment will have far reaching consequences for the future of non,profit research. [source]


TICL , a web tool for network-based interpretation of compound lists inferred by high-throughput metabolomics

FEBS JOURNAL, Issue 7 2009
Alexey V. Antonov
High-throughput metabolomics is a dynamically developing technology that enables the mass separation of complex mixtures at very high resolution. Metabolic profiling has begun to be widely used in clinical research to study the molecular mechanisms of complex cell disorders. Similar to transcriptomics, which is capable of detecting genes at differential states, metabolomics is able to deliver a list of compounds differentially present between explored cell physiological conditions. The bioinformatics challenge lies in a statistically valid interpretation of the functional context for identified sets of metabolites. Here, we present TICL, a web tool for the automatic interpretation of lists of compounds. The major advance of TICL is that it not only provides a model of possible compound transformations related to the input list, but also implements a robust statistical framework to estimate the significance of the inferred model. The TICL web tool is freely accessible at http://mips.helmholtz-muenchen.de/proj/cmp. [source]


Biological control of weeds: research by the United States Department of Agriculture,Agricultural Research Service: selected case studies,,

PEST MANAGEMENT SCIENCE (FORMERLY: PESTICIDE SCIENCE), Issue 6-7 2003
Paul C Quimby Jr
Abstract Research by the USDA-Agricultural Research Service (ARS) on biological control of weeds has been practiced for many years because of its inherent ecological and economic advantages. Today, it is further driven by ARS adherence to Presidential Executive Order 13112 (3 February 1999) on invasive species and to USDA-ARS policy toward developing technology in support of sustainable agriculture with reduced dependence on non-renewable petrochemical resources. This paper reports examples or case studies selected to demonstrate the traditional or classical approach for biological control programs using Old World arthropods against Tamarix spp, Melaleuca quinquenervia (Cav) ST Blake and Galium spurium L/Gaparine L, and the augmentative approach with a native plant pathogen against Pueraria lobata Ohwi = P montana. The examples illustrated various conflicts of interest with endangered species and ecological complexities of arthropods with associated microbes such as nematodes. Published in 2003 for SCI by John Wiley & Sons, Ltd. [source]


CT and Cross-sectional Anatomy of the Normal Head of the Loggerhead Sea Turtle (Caretta caretta)

ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 2005
A. Arencibia
The objective of this study is to describe the CT anatomy of the normal loggerhead sea turtle (Caretta caretta) head using three loggerhead sea turtle heads. CT imaging was performed using the following parameters: K.v.: 120 mAs: 220, and a soft-tissue window (WW 1880, WL 465): Transverse and sagittal CT images were obtained. Detailed anatomy of the head was acquired with the sagittal and transverse series. The heads were frozen and then sectioned using an electric saw, to compare them with the CT images. In CT, the grey scale is directly related to the radiation attenuation of the head structures. The skull and hyoid bones, and the lower jaw were easily identifiable due to the high CT density image compared to adjacent or surrounding structures such as the respiratory system, oral cavity, oesophagus and cranial cavity that appeared as a low opacity. The nervous structures, salt gland, eyeball, ramphoteca structure and different muscles of the head had an intermediate CT density and appeared grey. CT images of the loggerhead sea turtle head provided excellent detail of clinically relevant anatomy and correlated well with corresponding gross specimens. CT of the head has considerable advantages over other techniques: CT provides excellent spatial resolution and good discrimination between bone and soft tissue, and the structures are viewed without superimposition. The planimetric or sectional anatomy of the head allows a correct morphologic and topographic evaluation of the anatomic structures, which is a useful tool for the identification of the CT images. With developing technology, CT imaging may soon become more readily available for exotic animals imaging. In the same way, we consider it quite useful to be able to establish some references on head, in order to scan only selected parts during a clinical or experimental approach. The information presented in this communication should serve as an initial reference to evaluate CT images of the loggerhead sea turtle head and to assist interpretation of lesions of this region. [source]


Magnetic resonance elastography: A review

CLINICAL ANATOMY, Issue 5 2010
Yogesh K. Mariappan
Abstract Magnetic resonance elastography (MRE) is a rapidly developing technology for quantitatively assessing the mechanical properties of tissue. The technology can be considered to be an imaging-based counterpart to palpation, commonly used by physicians to diagnose and characterize diseases. The success of palpation as a diagnostic method is based on the fact that the mechanical properties of tissues are often dramatically affected by the presence of disease processes, such as cancer, inflammation, and fibrosis. MRE obtains information about the stiffness of tissue by assessing the propagation of mechanical waves through the tissue with a special magnetic resonance imaging technique. The technique essentially involves three steps: (1) generating shear waves in the tissue, (2) acquiring MR images depicting the propagation of the induced shear waves, and (3) processing the images of the shear waves to generate quantitative maps of tissue stiffness, called elastograms. MRE is already being used clinically for the assessment of patients with chronic liver diseases and is emerging as a safe, reliable, and noninvasive alternative to liver biopsy for staging hepatic fibrosis. MRE is also being investigated for application to pathologies of other organs including the brain, breast, blood vessels, heart, kidneys, lungs, and skeletal muscle. The purpose of this review article is to introduce this technology to clinical anatomists and to summarize some of the current clinical applications that are being pursued. Clin. Anat. 23:497,511, 2010. © 2010 Wiley-Liss, Inc. [source]