Home About us Contact | |||
Developing Neocortex (developing + neocortex)
Selected AbstractsA new animal model of infantile spasms with unprovoked persistent seizuresEPILEPSIA, Issue 2 2008Chong L. Lee Summary Purpose: Infantile spasms is one of the most severe epileptic syndromes of infancy and early childhood. Progress toward understanding the pathophysiology of this disorder and the development of effective therapies has been hindered by the lack of a relevant animal model. We report here the creation of such a model. Methods: The sodium channel blocker, tetrodotoxin (TTX), was chronically infused into the developing neocortex or hippocampus of infant rats by way of an osmotic minipump starting on postnatal day 10,12. Results: After a minimum of 10 days of infusion, approximately one-third of these rats began to display very brief (1,2 s) spasms, which consisted of symmetric or asymmetric flexion or extension of the trunk and sometimes involvement of one or both forelimbs. The typical ictal EEG pattern associated with the behavioral spasms consisted of an initial generalized, high amplitude, slow wave followed by an electrodecrement with superimposed fast activity. The interictal EEG revealed multifocal spikes and sharp waves, and in most animals that had spasms a hypsarrhythmic pattern was seen, at least intermittently, during NREM sleep. Like in humans, the spasms in the rat often occurred in clusters especially during sleep,wake transitions. Comparison of the ictal and interictal EEGs recorded in this model and those from humans with infantile spasms revealed that the patterns and the frequency components of both the ictal events and hypsarrhythmia were very similar. Discussion: The TTX model of infantile spasms should be of value in furthering an understanding of the pathophysiology of this seizure disorder. [source] Visualization of corticofugal projections during early cortical development in a ,-GFP-transgenic mouseEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2007Erin C. Jacobs Abstract The first postmitotic neurons in the developing neocortex establish the preplate layer. These early-born neurons have a significant influence on the circuitry of the developing cortex. However, the exact timing and trajectory of their projections, between cortical hemispheres and intra- and extra-cortical regions, remain unresolved. Here, we describe the creation of a transgenic mouse using a 1.3 kb golli promoter element of the myelin basic protein gene to target expression of a ,,green fluorescent protein (GFP) fusion protein in the cell bodies and processes of pioneer cortical neurons. During embryonic and early neonatal development, the timing and patterning of process extension from these neurons was examined. Analysis of ,-GFP fluorescent fibers revealed that progression of early labeled projections was interrupted unexpectedly by transient pauses at the corticostriatal and telencephalic,diencephalic boundaries before invading the thalamus just prior to birth. After birth the pioneering projections differentially invaded the thalamus, excluding some nuclei, e.g. medial and lateral geniculate, until postnatal days 10,14. Early labeled projections were also found to cross to the contralateral hemisphere as well as to the superior colliculus. These results indicate that early corticothalamic projections appear to pause before invading specific subcortical regions during development, that there is developmental regulation of innervation of individual thalamic nuclei, and that these early-generated neurons also establish early projections to commissural and subcortical targets. [source] Development of layer-specific axonal arborizations in mouse primary somatosensory cortexTHE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 3 2006DeLaine D. Larsen Abstract In the developing neocortex, pyramidal neurons use molecular cues to form axonal arbors selectively in the correct layers. Despite the utility of mice for molecular and genetic studies, little work has been done on the development of layer-specific axonal arborizations of pyramidal neurons in mice. We intracellularly labeled and reconstructed the axons of layer 2/3 and layer 5 pyramidal neurons in slices of primary somatosensory cortex from C57Bl6 mice on postnatal days 7,21. For all neurons studied, the development of the axonal arborizations in mice follows a pattern similar to that seen in other species; laminar specificity of the earliest axonal branches is similar to that of mature animals. At P7, pyramidal neurons are very simple, having only a main descending axon and few primary branches. Between P7 and P10, there is a large increase in the total number of axonal branches, and axons continue to increase in complexity and total length from P10 to P21. Unlike observations in ferrets, cats, and monkeys, two types of layer 2/3 pyramidal neurons are present in both mature and developing mice; cells in superficial layer 2/3 lack axonal arbors in layer 4, and cells close to the layer 4 border have substantial axonal arbors within layer 4. We also describe axonal and dendritic arborization patterns of three pyramidal cell types in layer 5. The axons of tall-tufted layer 5 pyramidal neurons arborize almost exclusively within deep layers while tall-simple, and short layer 5 pyramidal neurons also project axons to superficial layers. J. Comp. Neurol. 494:398,414, 2006. © 2005 Wiley-Liss, Inc. [source] Early NMDA receptor-driven waves of activity in the developing neocortex: physiological or pathological network oscillations?THE JOURNAL OF PHYSIOLOGY, Issue 1 2010Camille Allene Several patterns of coherent activity have been described in developing cortical structures, thus providing a general framework for network maturation. A detailed timely description of network patterns at circuit and cell levels is essential for the understanding of pathogenic processes occurring during brain development. Disturbances in the expression timetable of this pattern sequence are very likely to affect network maturation. This review focuses on the maturation of coherent activity patterns in developing neocortical structures. It emphasizes the intrinsic and synaptic cellular properties that are unique to the immature neocortex and, in particular, the critical role played by extracellular glutamate in controlling network excitability and triggering synchronous network waves of activity. [source] |