Developing Lung (developing + lung)

Distribution by Scientific Domains


Selected Abstracts


In Vivo Dysfunction of the Term Alveolar Macrophage After in Utero Ethanol Exposure

ALCOHOLISM, Issue 2 2007
Xiao-Du Ping
Background: The effects of in utero alcohol exposure on the immune function of the newborn remain under investigation. Fetal ethanol (ETOH) exposure increases oxidative stress in the developing lung, in part due to decreased availability of the antioxidant glutathione (GSH). We have previously shown that in utero ETOH impairs alveolar macrophage phagocytosis and viability in the premature pup, while maintaining GSH availability with maternal supplementation of S -adenosyl-methionine (SAM) during ETOH ingestion improves macrophage function and viability. We hypothesized that dysfunction of the neonatal alveolar macrophage exposed to ETOH in utero would persist at term gestation. Methods: Using a guinea-pig model of fetal ETOH exposure, timed-pregnant guinea-pigs were pair-fed ETOH±the GSH precursor SAM and the diet continued until spontaneous delivery. Term alveolar macrophages were evaluated using fluorescent microscopy for phagocytosis and apoptosis after in vitro incubation with Staphalococcus aureus. Using an in vivo model of intranasal Staph. aureus inoculation, the in vivo function of the term alveolar macrophage was also investigated using confocal fluorescent analysis. Results: In utero ETOH exposure increased oxidant stress in the alveolar macrophage and decreased phagocytosis and viability in vitro and in vivo. Confocal analysis of phagocytosis in vivo demonstrated a marked impairment of internalization of the bacteria by the ETOH-exposed alveolar macrophage. The addition of SAM during maternal ETOH ingestion prevented loss of alveolar macrophage function and viability in vitro and in vivo. Conclusions: In utero ETOH exposure impairs alveolar macrophage function and viability in vitro and in vivo even at term gestation. The ETOH-induced changes in macrophage function and viability can be ablated with maternal SAM supplementation. Further investigations are required to identify the mechanisms of ETOH-induced derangement of phagocytosis in the neonatal alveolar macrophage and the clinical ramifications of altered immune function after in utero alcohol exposure for the newborn. [source]


Inorganic arsenic as a developmental toxicant: In utero exposure and alterations in the developing rat lungs

MOLECULAR NUTRITION & FOOD RESEARCH (FORMERLY NAHRUNG/FOOD), Issue 5 2009
Jay S. Petrick
Abstract In the present study, we characterize the toxic effects of in utero arsenic exposure on the developing lung. We hypothesize that in utero exposure to inorganic arsenic through maternal drinking water causes altered gene and protein expression in the developing lung, indicative of downstream molecular and functional changes. From conception to embryonic day 18, we exposed pregnant Sprague-Dawley rats to 500 ppb arsenic (as arsenite) via the drinking water. Subtracted cDNA libraries comparing control to arsenic exposed embryonic lungs were generated. In addition, a broad Western blot analysis was performed to identify altered protein expression. A total of 59 genes and 34 proteins were identified as being altered. Pathway mapping and analysis showed that cell motility was the process most affected. The most likely affected pathway was alteration in integrin signaling through the ,-catenin pathway, altering c-myc. The present study shows that arsenic induces alterations in the developing lung. These data may be useful in the elucidation of molecular targets and biomarkers of arsenic exposure during lung development and may aid in understanding the etiology of arsenic induced adult respiratory disease and lung cancers. [source]


ErbB receptor dimerization, localization, and co-localization in mouse lung type II epithelial cells,

PEDIATRIC PULMONOLOGY, Issue 12 2006
Katja Zscheppang MSc
Abstract ErbB receptors are crucial for embryonic neuronal and cardiac development. ErbB receptor ligands neuregulin (NRG) and epidermal growth factor (EGF) play a major role in the developing lung, specifically in mesenchymal induced fetal surfactant synthesis by type II epithelial cells. Different erbB receptor ligands cause diverse biologic effects by stimulating specific erbB-dimers. It is not known how dimerization, cellular localization, and co-localization of erbB dimers are regulated in type II epithelial cells. We hypothesized that erbB receptors have a distinct dimerization, localization, and co-localization pattern in type II cells. In mouse type II epithelial cells, which express all four erbB receptors, erbB1 and erbB4 were the preferred dimerization partners. These dimerization patterns were ligand independent. Confocal microscopy showed these transmembrane receptors exhibited a strong nuclear localization. In non-stimulated cells, both erbB1 and erbB2 were predominantly localized to the nucleus and less intensely to the cytoplasm. However, erbB1 was mainly found in the nucleoli, whereas erbB2 spared the nucleolar region. ErbB3 was exclusively located in the nucleoli. ErbB4 was diffusely located in nucleus and cytoplasm, and like erbB2 spared the nucleolar region. Short stimulation with either EGF or NRG led to a more pronounced nuclear staining for erbB1, erbB2, and erbB4. All four receptors co-localized with each other after stimulation, but with varying intensity. The two known stimulators of fetal surfactant synthesis, NRG and NRG-containing fibroblast conditioned medium, changed cellular localization of the dimerization partners erbB4 and erbB2 in a distinct fashion. We conclude that erbB receptors have a receptor-specific localization and dimerization pattern in type II epithelial cells. Pediatr Pulmonol. 2006; 41:1205,1212. © 2006 Wiley-Liss, Inc. [source]


Lung function tests in neonates and infants with chronic lung disease: Lung and chest-wall mechanics

PEDIATRIC PULMONOLOGY, Issue 4 2006
Monika Gappa MD
This is the fifth paper in a review series that summarizes available data and critically discusses the potential role of lung function testing in infants and young children with acute neonatal respiratory disorders and chronic lung disease of infancy (CLDI). This review focuses on respiratory mechanics, including chest-wall and tissue mechanics, obtained in the intensive care setting and in infants during unassisted breathing. Following orientation of the reader to the subject area, we focused comments on areas of enquiry proposed in the introductory paper to this series. The quality of the published literature is reviewed critically with respect to relevant methods, equipment and study design, limitations and strengths of different techniques, and availability and appropriateness of reference data. Recommendations to guide future investigations in this field are provided. Numerous different methods have been used to assess respiratory mechanics with the aims of describing pulmonary status in preterm infants and assessing the effect of therapeutic interventions such as surfactant treatment, antenatal or postnatal steroids, or bronchodilator treatment. Interpretation of many of these studies is limited because lung volume was not measured simultaneously. In addition, populations are not comparable, and the number of infants studied has generally been small. Nevertheless, results appear to support the pathophysiological concept that immaturity of the lung leads to impaired lung function, which may improve with growth and development, irrespective of the diagnosis of chronic lung disease. To fully understand the impact of immaturity on the developing lung, it is unlikely that a single parameter such as respiratory compliance or resistance will accurately describe underlying changes. Assessment of respiratory mechanics will have to be supplemented by assessment of lung volume and airway function. New methods such as the low-frequency forced oscillation technique, which differentiate the tissue and airway components of respiratory mechanics, are likely to require further development before they can be of clinical significance. Pediatr Pulmonol. © 2006 Wiley-Liss, Inc. [source]


Distribution and Quantity of Contractile Tissue in Postnatal Development of Rat Alveolar Interstitium

THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 1 2008
Renée Dickie
Abstract Alpha,smooth muscle actin (,-SMA) -expressing cells are important participants in lung remodeling, during both normal postnatal ontogeny and after injury. Developmental dysregulation of these contractile cells contributes to bronchopulmonary dysplasia in newborns, and aberrant recapitulation in adults of the normal ontogeny of these cells has been speculated to underlie disease and repair in mature lungs. The significance of airway smooth muscle has been widely investigated, but contractile elements within the pulmonary parenchyma, although also of structural and functional consequence in developing and mature lungs, are relatively unstudied and little quantitative information exists. Here, we quantify the areal density of ,-SMA expression in lung parenchyma and assess changes in its spatiotemporal distribution through postnatal ontogeny. Using an antibody against ,-SMA, we immunofluorescently labeled contractile elements in lung sections from a postnatal growth series of rats. Images were segmented using thresholded pixel intensity. Alpha-SMA areal density in the alveolar interstitium was calculated by dividing the area of ,-SMA,positive staining by the tissue area. The areal density of ,-SMA in 2-day neonates was 3.7%, almost doubled, to 7.2% by 21 days, and decreased to 3% in adults. Neonates had large, elongate concentrations of ,-SMA, and ,-SMA localized both at septal tips and within the interstitium. In adults, individual areas of ,-SMA expression were smaller and more round, and located predominately in alveolar ducts, at alveolar ends and bends. The results are consistent with increasing ,-SMA expression during the period of peak myofibroblast activity, corresponding to the phase of rapid alveolarization in the developing lung. Anat Rec, 291:83,93, 2007. © 2007 Wiley-Liss, Inc. [source]


Early-life co-administration of cockroach allergen and endotoxin augments pulmonary and systemic responses

CLINICAL & EXPERIMENTAL ALLERGY, Issue 7 2009
K. Kulhankova
Summary Background Environmental exposures to cockroach allergen and endotoxin are recognized epidemiological risk factors for the early development of allergies and asthma in children. Because of this, it is important to examine the role of early-life concurrent inhalation exposures to cockroach allergen and endotoxin in the pathogenesis of allergic airways disease. Objective We examined the effects of repeated concomitant endotoxin and cockroach allergen inhalation on the pulmonary and systemic immune responses of newborn and juvenile mice. Methods C3H/HeBFeJ mice were exposed to inhaled endotoxin and cockroach allergen via intranasal instillation from day 2 to 21 after birth, and systemic and pulmonary responses were examined in serum, bronchoalveolar lavage fluid, and lung tissue. Results Cockroach allergen exposures induced pulmonary eosinophilic inflammation, total and allergen-specific IgE, IgG1, and IgG2a production, and alveolar remodelling. Co-exposures with endotoxin and cockroach allergen significantly increased serum IgE and IgG1, lung inflammation, and alveolar wall thickness, and decreased airspace volume density. Importantly, compared with exposures with individual substances, the responses to co-exposures were more than additive. Conclusions Repeated inhalation exposures of neonatal and juvenile mice to endotoxin and cockroach allergen increased the pulmonary inflammatory and systemic immune responses in a synergistic manner and enhanced alveolar remodelling in the developing lung. These data underscore the importance of evaluating the effect of multiple, concurrent environmental exposures, and of using an experimental model that incorporates clinically relevant timing and route of exposures. [source]