Developing Cerebellum (developing + cerebellum)

Distribution by Scientific Domains


Selected Abstracts


Expression of CRABP I mRNA in fastigial cells of the developing cerebellum

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2002
Rosalba Parenti
Abstract The expression of the cellular retinoic acid binding protein type I (CRABP I) was examined in the early phase of cerebellar development in the mouse. The CRABP I was expressed from embryonic day (E) 10.5 to E15.5 in the cerebellar plate. The expression was diffused at E10.5,E11.5 and thereafter localized in a small rostrodorsal area of the cerebellar territory of both sides. By using in situ hybridization and both immunohistochemistry and carbocyanine tracing procedures, we identified the fastigial cells as the population that expresses CRABP I in the cerebellum. The results suggest that these cells play a critical role in the early development of the cerebellum. [source]


Opioids intrinsically inhibit the genesis of mouse cerebellar granule neuron precursors in vitro: differential impact of , and , receptor activation on proliferation and neurite elongation

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2000
Kurt F. Hauser
Abstract Although opioids are known to affect neurogenesis in vivo, it is uncertain the extent to which opioids directly or indirectly affect the proliferation, differentiation or death of neuronal precursors. To address these questions, the intrinsic role of the opioid system in neurogenesis was systematically explored in cerebellar external granular layer (EGL) neuronal precursors isolated from postnatal mice and maintained in vitro. Isolated neuronal precursors expressed proenkephalin-derived peptides, as well as specific , and ,, but negligible ,, opioid receptors. The developmental effects of opioids were highly selective. Morphine-induced , receptor activation inhibited DNA synthesis, while a preferential ,2 -receptor agonist ([d -Ala2]-deltorphin II) or Met-enkephalin, but not the ,1 agonist [d -Pen2, d -Pen5]-enkephalin, inhibited differentiation within the same neuronal population. If similar patterns occur in the developing cerebellum, spatiotemporal differences in endogenous , and , opioid ligand,receptor interactions may coordinate distinct aspects of granule neuron maturation. The data additionally suggest that perinatal exposure to opiate drugs of abuse directly interfere with cerebellar maturation by disrupting normal opioid signalling and inhibiting the proliferation of granule neuron precursors. [source]


Cerebellar granule cells cultured from adolescent rats express functional NMDA receptors: an in vitro model for studying the developing cerebellum

JOURNAL OF NEUROCHEMISTRY, Issue 2 2008
R. Lisa Popp
Abstract In the developing rat cerebellum functional NMDA receptors (NMDARs) expressing the NR2C subunit have been identified on or after postnatal day 19. We obtained primary cultured cells from 19- to 35-day-old rat cerebellum that expressed few oligodendrocytes or astrocytes. Cultured cells were immunoreactive for neuron-specific proteins thus indicating a neuronal population. The primary neuron present was the granule cell as indicated by immunofluorescence for the GABAA alpha 6 subunit. Whole-cell patch-clamp experiments indicated that functional NMDARs were present. Functional characteristics of NMDARs expressed in cerebellar granule cells (CGCs) obtained from adolescent animals were similar to those previously reported for NMDARs expressed in CGCs obtained from neonatal rats. Cultured CGCs obtained from older animals contained NMDARs that were inhibited by EtOH and were less sensitive to the NR2B subunit-specific antagonist Ro 25-6981. Furthermore, NMDA-induced currents were smaller than those observed in CGCs. Western blot analysis indicated the presence of the NMDA NR2A and NR2C subunits, but not the NR2B in cultures obtained from the adolescent rats. CGCs obtained from adolescent rats express functional NMDARs consistent with a developmental profile observed in vivo. [source]


The Neuropeptide Pituitary Adenylate Cyclase-Activating Polypeptide Exerts Anti-Apoptotic and Differentiating Effects during Neurogenesis: Focus on Cerebellar Granule Neurones and Embryonic Stem Cells

JOURNAL OF NEUROENDOCRINOLOGY, Issue 5 2007
A. Falluel-Morel
Pituitary adenylate cyclase-activating polypeptide (PACAP) was originally isolated from ovine hypothalamus on the basis of its hypophysiotrophic activity. It has subsequently been shown that PACAP and its receptors are widely distributed in the central nervous system of adult mammals, indicating that PACAP may act as a neurotransmitter and/or neuromodulator. It has also been found that PACAP and its receptors are expressed in germinative neuroepithelia, suggesting that PACAP could be involved in neurogenesis. There is now compelling evidence that PACAP exerts neurotrophic activities in the developing cerebellum and in embryonic stem (ES) cells. In particular, the presence of PACAP receptors has been demonstrated in the granule layer of the immature cerebellar cortex, and PACAP has been shown to promote survival, inhibit migration and activate neurite outgrowth of granule cell precursors. In cerebellar neuroblasts, PACAP is a potent inhibitor of the mitochondrial apoptotic pathway through activation of the MAPkinase extracellular regulated kinase. ES cells and embryoid bodies (EB) also express PACAP receptors and PACAP facilitates neuronal orientation and induces the appearance of an electrophysiological activity. Taken together, the anti-apoptotic and pro-differentiating effects of PACAP characterised in cerebellar neuroblasts as well as ES and EB cells indicate that PACAP acts not only as a neurohormone and a neurotransmitter, but also as a growth factor. [source]


Expression and molecular diversity of Tcf7l2 in the developing murine cerebellum and brain

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 7 2009
Tommy A. Nazwar
Abstract The Wingless family of secreted proteins impinges on multiple aspects of vertebrate nervous system development, from early global patterning and cell fate decision to synaptogenesis. Here, we mapped the developmental expression of the Tcf7l2, which is key to the canonical Wingless signaling cascade, in the developing cerebellum. The exclusive and transient expression of Tcf7l2 in ventricular and Olig2-defined precursor cells within the cerebellar anlage, and its predominant expression in postmitotic neurons in the midbrain/inferior colliculus allowed us to ask whether cell type,specific differences are also reflected in splice isoform variability. We also included in this analysis intestinal epithelia, where Tcf7l2 function has been intensively studied. Our data reveal extensive variability of Tcf7l2 splicing in the central nervous system. Additional variability in brain-expressed Tcf7l2 is generated by a length polymorphism of expressed mRNAs in a stretch of normally nine adenines found at the beginning of exon 18, reminiscent of variability observed at the same site in cancers with microsatellite instability. A consensus emerging from our data is that the expression of isoforms comprising or lacking the C-clamp motif, which has been linked by in vitro studies to the regulation of cell growth, is indeed tightly correlated with the proliferative status in vivo. © 2009 Wiley-Liss, Inc. [source]


AUF1 and Hu proteins in the developing rat brain: Implication in the proliferation and differentiation of neural progenitors

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 6 2009
Dolores Hambardzumyan
Abstract Posttranscriptional events such as RNA stabilization are important for cell differentiation, but little is known about the impact of AU-rich binding proteins (AUBPs) on the fate of neural cells. Expression of destabilizing AUBPs such as AUF1 and neuronal-specific stabilizing proteins such as HuB, HuC and HuD was therefore analyzed in the developing central nervous system. Real-time RT-PCR indicated a specific developmental pattern in the postnatal cerebellum, with a progressive down-regulation of AUF1 from P1, whereas HuB was strongly up-regulated at about P7. These changes were accompanied by a progressive increase in AUF1p45 and the disappearance of one HuB isoform from P15, suggesting particular roles for these AUBPs in the developing cerebellum. AUF1 was detected in the three main cerebellar layers, whereas Hu proteins were found only in postmitotic neurons. A role for Hu proteins in the early stages of neuronal differentiation is further supported by arrest of cell proliferation following induction of HuB or HuD expression in a neural stem cell line. The decrease in nestin expression suggest that HuD, but not HuB, favors the transition of neural progenitors into early neuroblasts, but other factors are most probably required for their full differentiation into neurons, insofar as GAP-43 was not detected in HuD-transfected cells. These data suggest critical roles for HuB at the very earliest stages of neuronal differentiation, such as cell cycle exit, and HuD might also be involved in the transition of neural progenitors into early neuroblasts. Taken together, the present results strengthen the importance of AUBPs in brain ontogenesis. © 2008 Wiley-Liss, Inc. [source]


Radiation damage increases Purkinje neuron heterokaryons in neonatal cerebellum,

ANNALS OF NEUROLOGY, Issue 1 2009
Silvia Espejel PhD
Objective Recent studies have shown that in radiated and bone marrow transplanted mice, bone marrow-derived cells (BMDCs) fuse with Purkinje neurons resulting in the formation of binucleated heterokaryons. Here we investigated whether radiation plays a role in the formation of Purkinje neuron heterokaryons. Methods Fused cells were identified by reporter gene expression in mice, carrying floxed LacZ (R26R-LacZ) in all cells and Cre in hematopoietic-derived cells. Cell fusion was confirmed by the presence of two nuclei. The number of fused Purkinje neurons was studied in: 1) whole-body radiated newborn and adult R26R-LacZ mice, transplanted with bone marrow cells expressing Cre; 2) in newborn and adult mice that received different doses of radiation to the head; and 3) in radiated and non-radiated newborns treated with a myeloablative drug before bone marrow transplantation. Results In neonatal, but not in adult cerebelleum, radiation,in a dose-dependent manner,induces a dramatic increase in the number of fused Purkinje neurons. Interpretation Increase recruitment of BMDCs into the cerebellum, radiation damage to cerebellar cells, or both, increase the formation of fused Purkinje cells. BMDC-Purkinje heterokaryons formation may reflect an endogeneous neuronal repair mechanism, or it could be a by-product of radiation-induced inflammation. In either case, fused Purkinje neurons increase following radiation damage in the developing cerebellum. The above observations reveal a novel consequence of head radiation in neonatal rodents. It will be interesting to determine if similar increase in the number of binucleated Purkinje neurons, occurs in children that receive radiation during early development. Ann Neurol 2009;66:100,109 [source]