Developed Model (developed + model)

Distribution by Scientific Domains


Selected Abstracts


Physical Model-Based Indirect Measurements of Blood Pressure and Flow Using a Centrifugal Pump

ARTIFICIAL ORGANS, Issue 8 2000
Tadashi Kitamura
Abstract: This article describes a technique offering indirect measurements of pump pressure differential and flow with certain accuracy independent of changes in blood viscosity. This technique is based on noninvasive measurements of the motor current and rotation speed using the physical model equations of the centrifugal pump system. Blood viscosity included in the coefficients of the dynamic equations is first estimated, and then substitution of the estimated viscosity into the steady equations of the model provides pump flow and pressure differential. In vitro tests using a Capiox pump showed a sufficient linear correlation between actual values and their estimates for pressure differential and pump flow. An in vivo test using a 45 kg sheep showed that the proposed algorithm needs robustness for the convergence of estimates of viscosity. An overall evaluation, however, of the developed algorithm/model showed indications of success in terms of efficient computation and modeling. [source]


The effects of torsion and motion coupling in site response estimation

EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS, Issue 5 2003
Mohammad R. Ghayamghamian
Abstract Soil amplification characteristics are investigated using data from the Chibaken-Toho-Oki earthquake and its aftershocks recorded at Chiba dense array in Japan. The frequency-dependent amplification function of soil is calculated using uphole-to-downhole spectral ratio analysis, considering the horizontal components of shear wave. The identified spectral ratios consistently demonstrate the splitting of peaks in their resonance frequencies and low amplification values in comparison with a 1D model. The torsional behaviour and horizontal ground motion coupling are clarified as the reasons for these phenomena at the site. To prove the hypothesis, the torsional motion is directly evaluated using the data of the horizontal dense array in different depths at the site. The comparison between Fourier spectra of torsional motion and identified transfer functions reveals the peaks at the same frequencies. The wave equation including torsion and horizontal motion coupling is introduced and solved for the layered media by applying wave propagation theory. Using the developed model, the effects of torsional motion with horizontal motion coupling on soil transfer function are numerically examined. Splitting and low amplification at resonance frequencies are confirmed by the results of numerical analysis. Furthermore, the ground motion in two horizontal directions at the site is simulated using site geotechnical specification and optimizing the model parameters. The simulated and recorded motions demonstrate good agreement that is used to validate the hypothesis. In addition, the spectral density of torsional ground motions are compared with the calculated one and found to be well predicted by the model. Finally, the results are used to explain the overestimation of damping in back-calculation of dynamic soil properties using vertical array data in small strain level. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Development and field validation of a biotic ligand model predicting chronic copper toxicity to Daphnia magna

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 6 2004
Karel A.C. De Schamphelaere
Abstract In this study, we developed a toxicity model predicting the long-term effects of copper on the reproduction of the cladoceran Daphnia magna that is based on previously reported toxicity tests in 35 exposure media with different water chemistries. First, it was demonstrated that the acute copper biotic ligand model (BLM) for D. magna could not serve as a reliable basis for predicting chronic copper toxicity. Consequently, BLM constants for chronic exposures were derived by multiple regression analysis of 21-d median effective concentrations (EC50s; expressed as Cu2+ activity) versus physicochemistry from a large toxicity dataset and the results of an additional experiment in which the individual effect of sodium on copper toxicity was investigated. The effect of sodium on chronic toxicity (log KNaBL = 2.91) seemed to be similar to its effect on acute toxicity (log KNaBL = 3.19). However, in contrast to the acute BLM, no significant calcium, magnesium, or combined competition effect was observed, and an increase in proton competition and bioavailability of CuOH+ and CuCO3 complexes was noted. Some indirect evidence was also found for some limited toxicity of complexes of copper with two of three tested types of dissolved organic matter. Because the latter was only a minor effect, this factor was not included in the chronic Cu BLM. The newly developed model performed well in predicting 21-d EC50s and no-observed-effect concentrations in natural water samples: 79% of the toxicity threshold values were predicted within a factor of two of the observed values. It is clear, however, that more research is needed to provide information on the exact mechanisms that have resulted in different BLM constants for chronic exposures (as opposed to acute exposures). It is suggested that the developed model can contribute to the improvement of risk assessment procedures of copper by incorporating bioavailability of copper in these regulatory exercises. [source]


Evaluation of a digital camera image applied to PCB inspection

HUMAN FACTORS AND ERGONOMICS IN MANUFACTURING & SERVICE INDUSTRIES, Issue 4 2008
Bernard C. Jiang
Rapid advancement and widespread digital camera applications have made it possible to replace charge-coupled device (CCD) cameras in automatic inspections for industrial applications. However, most digital camera applications using the automatic exposure mode may not be effective in some of the inspection environments. The reflection from a board surface in printed circuit board (PCB) inspections is one such problem area. The objective of this study is to develop a methodology to evaluate the effectiveness of using digital cameras for inspection. The indices used for evaluating digital camera image quality are the perceived image quality, the visual resolution, and the noise. An experiment was designed and conducted to determine the optimal camera parameter combination for attaining the best image quality. The desirability function was used to compare various digital camera parameter settings in considering three image quality indices for selecting the best camera-operating conditions. Based on the developed model and the subjective image quality index, the overall image quality improved 9.4% and 13.86%, respectively. The developed methodology can be used to: (a) determine the digital camera image quality, (b) provide an improved model for determining the automatic exposure setting for digital camera designers, and (c) adjust the digital camera parameters for automatic inspection. © 2008 Wiley Periodicals, Inc. [source]


Numerical modeling of seismic triggering, evolution, and deposition of rapid landslides: Application to Higashi,Takezawa (2004)

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 4 2010
Nikos Gerolymos
Abstract A mathematical model is developed for the dynamic analysis of earthquake-triggered rapid landslides, considering two mechanically coupled systems: (a) the accelerating deformable body of the slide and (b) the rapidly deforming shear band at the base of the slide. The main body of the slide is considered as a one-phase mixture of Newtonian incompressible fluids and Coulomb solids sliding on a plane of variable inclination. The evolution of the landslide is modeled via a depth-integrated model of the Savage,Hutter type coupled with: (a) a cyclic hysteretic constitutive model of the Bouc,Wen type and (b) Voellmy's rheology for the deformation of the material within the shear band. The original shallow-water equations that govern the landslide motion are appropriately reformulated to account for inertial forces due to seismic loading, and to allow for a smooth transition between the active and the passive state. The capability of the developed model is tested against the Higashi,Takezawa landslide. Triggered by the 2004 Niigata-ken Chuetsu earthquake, the slide produced about 100m displacement of a large wedge from an originally rather mild slope. The mechanism of material softening inside the shear band responsible for the surprisingly large run-out of the landslide is described by a set of equations for grain crushing-induced pore-water pressures. The back-analysis reveals interesting patterns on the flow dynamics, and the numerical results compare well with field observations. It is shown that the mechanism of material softening is a crucial factor for the initiation and evolution of the landslide, while viscoplastic frictional resistance is a key requirement for successfully reproducing the field data. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Some numerical issues using element-free Galerkin mesh-less method for coupled hydro-mechanical problems

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 7 2009
Mohammad Norouz Oliaei
Abstract A new formulation of the element-free Galerkin (EFG) method is developed for solving coupled hydro-mechanical problems. The numerical approach is based on solving the two governing partial differential equations of equilibrium and continuity of pore water simultaneously. Spatial variables in the weak form, i.e. displacement increment and pore water pressure increment, are discretized using the same EFG shape functions. An incremental constrained Galerkin weak form is used to create the discrete system equations and a fully implicit scheme is used for discretization in the time domain. Implementation of essential boundary conditions is based on a penalty method. Numerical stability of the developed formulation is examined in order to achieve appropriate accuracy of the EFG solution for coupled hydro-mechanical problems. Examples are studied and compared with closed-form or finite element method solutions to demonstrate the validity of the developed model and its capabilities. The results indicate that the EFG method is capable of handling coupled problems in saturated porous media and can predict well both the soil deformation and variation of pore water pressure over time. Some guidelines are proposed to guarantee the accuracy of the EFG solution for coupled hydro-mechanical problems. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Thermoeconomic modeling of micro-CHP (micro-cooling, heating, and power) for small commercial applications

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 9 2008
Alan Moran
Abstract The increasing demand for electrical power as well as energy for heating and cooling of residences and small commercial buildings is a growing worldwide concern. Micro-cooling, heating, and power (micro-CHP), typically designated as less than 30,kW electric, is decentralized electricity generation coupled with thermally activated components for residential and small commercial applications. The number of combinations of components and parameters in a micro-CHP system is too many to be designed through experimental work alone. Therefore, theoretical models for different micro-CHP components and complete micro-CHP systems are needed to facilitate the design of these systems and to study their performance. This paper presents a model for micro-CHP systems for residential and small commercial applications. Some of the results that can be obtained using the developed model include the cost per month of operation of using micro-CHP versus conventional technologies, the amount of fuel per month required to run micro-CHP systems, the overall efficiency of micro-CHP systems, etc. A case study is used to demonstrate differences in the system performances of micro-CHP systems driven by a natural gas internal combustion engine and a diesel engine. Some of the results show that both systems have similar performance and that system total efficiencies in cooler months of up to 80% could be obtained. Also, modeling results show that there is a limit in fuel price that economically prevents the use of CHP systems, which is $11 MBTU,1 for this specific case. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Transient thermal modelling of heat recovery steam generators in combined cycle power plants

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 11 2007
Sepehr Sanaye
Abstract Heat recovery steam generator (HRSG) is a major component of a combined cycle power plant (CCPP). This equipment is particularly subject to severe thermal stress especially during cold start-up period. Hence, it is important to predict the operational parameters of HRSGs such as temperature of steam, water, hot gas and tube metal of heating elements as well as pressure change in drums during transient and steady-state operation. These parameters may be used for estimating thermal and mechanical stresses which are important in HRSG design and operation. In this paper, the results of a developed thermal model for predicting the working conditions of HRSG elements during transient and steady-state operations are reported. The model is capable of analysing arbitrary number of pressure levels and any number of elements such as superheater, evaporator, economizer, deaerator, desuperheater, reheater, as well as duct burners. To assess the correct performance of the developed model two kinds of data verification were performed. In the first kind of data verification, the program output was compared with the measured data collected from a cold start-up of an HRSG at Tehran CCPP. The variations of gas, water/steam and metal temperatures at various sections of HRSG, and pressure in drums were among the studied parameters. Mean differences of about 3.8% for temperature and about 9.2% for pressure were observed in this data comparison. In the second kind of data verification, the steady-state numerical output of the model was checked with the output of the well-known commercial software. An average difference of about 1.5% was found between the two latter groups of data. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Application of different training methodologies for the development of a back propagation artificial neural network retention model in ion chromatography

JOURNAL OF CHEMOMETRICS, Issue 2 2008
Tomislav Bolan
Abstract The reliability of predicted separations in ion chromatography depends mainly on the accuracy of retention predictions. Any model able to improve this accuracy will yield predicted optimal separations closer to the reality. In this work artificial neural networks were used for retention modeling of void peak, fluoride, chlorite, chloride, chlorate, nitrate and sulfate. In order to increase performance characteristics of the developed model, different training methodologies were applied and discussed. Furthermore, the number of neurons in hidden layer, activation function and number of experimental data used for building the model were optimized in terms of decreasing the experimental effort without disruption of performance characteristics. This resulted in the superior predictive ability of developed retention model (average of relative error is 0.4533%). Copyright © 2008 John Wiley & Sons, Ltd. [source]


Modelling of air drying of Hac,haliloglu-type apricots

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 2 2006
Hakan Okyay Menges
Abstract In this study a laboratory dryer was used for the thin layer drying of sulfured and non-sulfured apricots. The moisture ratio values throughout the drying process were calculated by 14 different mathematical models, namely Newton, Page, modified Page, modified Page-II, Henderson and Pabis, logarithmic, two-term, two-term exponential, Wang and Singh, Thompson, diffusion approximation, modified Henderson and Papis, Verma et al. and Midilli et al. models. Root mean square error, reduced chi-square, mean bias error, adjusted R -square and modelling efficiency were used as statistical parameters to determine the most suitable model among them. According to the results, the Page model was chosen to explain the thin layer drying behaviour of sulfured and non-sulfured apricots. The effects of drying air temperature (T) and velocity (V) on the constants and coefficients of the best moisture ratio model were determined by multiple regression analysis. The moisture ratio (MR) could be predicted by the Page model equation MR = exp(,ktn) with constants and coefficients k = 0.470893 + 0.078775V and n = 0.017786 exp(0.051935T) for sulfured apricots and k = 4.578252 + 1.144643T and n = 0.888040 + 0.145559V for non-sulfured apricots. It is possible to predict the moisture content of the product with the generalised Page model incorporating the effects of drying air temperature and velocity on the model constants and coefficients in the ranges T = 70,80 °C and V = 1,3 m s,1. This developed model showed acceptable agreement with the experimental results, explained the drying behaviour of the product and could also be used for engineering applications. Copyright © 2005 Society of Chemical Industry [source]


Revenue management: A real options approach

NAVAL RESEARCH LOGISTICS: AN INTERNATIONAL JOURNAL, Issue 5 2004
C.K. Anderson
Abstract Revenue management is the process of actively managing inventory or capacity to maximize revenues. The active management typically occurs through managerial levers such as price, promotion, or availability. We present a novel real options approach to revenue management that is specifically suited to the car rental business. We illustrate the concept with actual car rental data. The model produces minimally acceptable prices and inventory release quantities (number of cars available for rent at a given price) as a function of remaining time and available inventory. The pricing and inventory release recommendations of the developed model confirm earlier empirical analysis that suggested current practises discount too deeply early in the booking cycle. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004 [source]


Effects of loading rate on viscoplastic properties of polymer geosynthetics and its constitutive modeling

POLYMER ENGINEERING & SCIENCE, Issue 3 2010
Fang-Le Peng
On the basis of the special tensile test results under various loading histories, the rate-dependent behaviors of three polymer geosynthetics due to their viscous properties have been investigated. All the investigated polymer geosynthetics show significant loading rate effects, creep deformation, and stress relaxation. Except for the polyester geogrid showing the combined viscosity, all the investigated polymer geosynthetics exhibit the isotach viscosity. An elasto-viscoplastic constitutive model described in a nonlinear three-component model framework is developed to simulate the rate-dependent behaviors of polymer geosynthetics. The developed constitutive model is verified by comparing its simulated results with the experimental data of polymer geosynthetics presented in this study and those available from the literature. The comparison indicates that the developed model can reasonably interpret the rate-dependent behaviors of polymer geosynthetics under arbitrary loading histories, including the step-changed strain rate loading, creep, and stress relaxation applied during otherwise monotonic loading (ML). POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers [source]


A Spatial Scan Statistic for Survival Data

BIOMETRICS, Issue 1 2007
Lan Huang
Summary Spatial scan statistics with Bernoulli and Poisson models are commonly used for geographical disease surveillance and cluster detection. These models, suitable for count data, were not designed for data with continuous outcomes. We propose a spatial scan statistic based on an exponential model to handle either uncensored or censored continuous survival data. The power and sensitivity of the developed model are investigated through intensive simulations. The method performs well for different survival distribution functions including the exponential, gamma, and log-normal distributions. We also present a method to adjust the analysis for covariates. The cluster detection method is illustrated using survival data for men diagnosed with prostate cancer in Connecticut from 1984 to 1995. [source]