Home About us Contact | |||
Devastating Neurodegenerative Disorder (devastating + neurodegenerative_disorder)
Selected AbstractsBimEL as a possible molecular link between proteasome dysfunction and cell death induced by mutant huntingtinEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2010Rebecca Leon Abstract Huntington's disease (HD) is a devastating neurodegenerative disorder caused by an expanded polyglutamine repeat within the N-terminus of the huntingtin protein. It is characterized by a selective loss of medium spiny neurons in the striatum. It has been suggested that impaired proteasome function and endoplasmic reticulum (ER) stress play important roles in mutant huntingtin (mHtt)-induced cell death. However, the molecular link involved is poorly understood. In the present study, we identified the essential role of the extra long form of Bim (Bcl-2 interacting mediator of cell death), BimEL, in mHtt-induced cell death. BimEL protein expression level was significantly increased in cell lines expressing the N-terminus of mHtt and in a mouse model of HD. Although quantitative RT-PCR analysis indicated that BimEL mRNA was increased in cells expressing mHtt, we provided evidence showing that, at the post-translational level, phosphorylation of BimEL played a more important role in regulating BimEL expression. Up-regulation of BimEL facilitated the translocation of Bax to the mitochondrial membrane, which further led to cytochrome c release and cell death. On the other hand, knocking down BimEL expression prevented mHtt-induced cell death. Taken together, these findings suggest that BimEL is a key element in regulating mHtt-induced cell death. A model depicting the role of BimEL in linking mHtt-induced ER stress and proteasome dysfunction to cell death is proposed. [source] Mechanisms of neurodegeneration in Huntington's diseaseEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2008Joana M. Gil Abstract Huntington's disease (HD) is caused by an expansion of cytosine,adenine,guanine (CAG) repeats in the huntingtin gene, which leads to neuronal loss in the striatum and cortex and to the appearance of neuronal intranuclear inclusions of mutant huntingtin. Huntingtin plays a role in protein trafficking, vesicle transport, postsynaptic signaling, transcriptional regulation, and apoptosis. Thus, a loss of function of the normal protein and a toxic gain of function of the mutant huntingtin contribute to the disruption of multiple intracellular pathways. Furthermore, excitotoxicity, dopamine toxicity, metabolic impairment, mitochondrial dysfunction, oxidative stress, apoptosis, and autophagy have been implicated in the progressive degeneration observed in HD. Nevertheless, despite the efforts of a multidisciplinary scientific community, there is no cure for this devastating neurodegenerative disorder. This review presents an overview of the mechanisms that may contribute for HD pathogenesis. Ultimately, a better understanding of these mechanisms will lead to the development of more effective therapeutic targets. [source] GFAP: Functional implications gleaned from studies of genetically engineered miceGLIA, Issue 1 2003Albee Messing Abstract GFAP is the major intermediate filament of mature astrocytes, and its relatively specific expression in these cells suggests an important function. To study the role of the GFAP gene, mice have been created carrying null alleles (no protein), modified alleles (altered protein), or added wild type alleles (elevated protein). Surprisingly, absence of GFAP has relatively subtle effects on development. On the other hand, over-expression can be lethal, and led to the discovery that GFAP coding mutations are responsible for most cases of Alexander disease, a devastating neurodegenerative disorder. Here we review what the various GFAP mouse models reveal about GFAP and astrocyte function. GLIA 43:87,90, 2003. © 2003 Wiley-Liss, Inc. [source] Mitochondrial A, A potential cause of metabolic dysfunction in Alzheimer's diseaseIUBMB LIFE, Issue 12 2006Xi Chen Abstract Deficits in mitochondrial function are a characteristic finding in Alzheimer's disease (AD), though the mechanism remains to be clarified. Recent studies revealed that amyloid , peptide (A,) gains access into mitochondrial matrix, which was much more pronounced in both AD brain and transgenic mutant APP mice than in normal controls. A, progressively accumulates in mitochondria and mediates mitochondrial toxicity. Interaction of mitochondrial A, with mitochondrial enzymes such as amyloid , binding alcohol dehydrogenase (ABAD) exaggerates mitochondrial stress by inhibiting the enzyme activity, releasing reactive oxygen species (ROS), and affecting glycolytic, Krebs cycle and/or the respiratory chain pathways through the accumulation of deleterious intermediate metabolites. The pathways proposed may play a key role in the pathogenesis of this devastating neurodegenerative disorder, Alzheimer's disease. iubmb Life, 58: 686-694, 2006 [source] Stem cell-based cell therapy for Huntington disease: A reviewNEUROPATHOLOGY, Issue 1 2008Manho Kim Huntington disease (HD) is a devastating neurodegenerative disorder and no proven medical therapy is currently available to mitigate its clinical manifestations. Although fetal neural transplantation has been tried in both preclinical and clinical investigations, the efficacy is not satisfactory. With the recent explosive progress of stem cell biology, application of stem cell-based therapy in HD is an exciting prospect. Three kinds of stem cells, embryonic stem cells, bone marrow mesenchymal stem cells and neural stem cells, have previously been utilized in cell therapy in animal models of neurological disorders. However, neural stem cells were preferably used by investigators in experimental HD studies, since they have a clear capacity to become neurons or glial cells after intracerebral or intravenous transplantation, and they induce functional recovery. In this review, we summarize the current state of cell therapy utilizing stem cells in experimental HD animal models, and discuss the future considerations for developing new therapeutic strategies using neural stem cells. [source] Synthesis and Pharmacological Evaluation of 8- and 9-Substituted Benzolactam-V8 Derivatives as Potent Ligands for Protein Kinase,C, a Therapeutic Target for Alzheimer's DiseaseCHEMMEDCHEM, Issue 3 2006Ulrich Abstract A central element in the pathophysiology of Alzheimer's disease (AD) is the formation of amyloid plaques, which result from abnormal processing of the amyloid precursor protein (APP). The processing of APP is largely provided by three key enzymes, namely the ,-, ,-, and ,-secretases. As the latter two contribute to the formation of neurotoxic A, fragments while ,-secretase does not, a decrease in the amyloidogenic products can be brought about either by inhibition of the ,- and ,-secretases or through the activation of ,-secretase. It is now known that the activation of protein kinase,C (PKC) enhances ,-secretase activity and therefore represents a possible target for the development of agents urgently needed for the treatment of this devastating neurodegenerative disorder. In the present study, new benzolactam-V8-based PKC activators were synthesized and tested for their binding affinity toward PKC,. All compounds tested showed binding values in the nanomolar concentration range. In accordance with previous publications, 9-substitution dramatically increased PKC binding affinity in comparison with the corresponding 8-substituted analogues. In addition to the location of the side chain on the aromatic ring, the binding affinities of these benzolactams were found to depend on the orientation, length, and electronic properties of this appendage. An interesting decrease in binding affinity was found for the 9-thienyl analogue 13, suggesting adverse electronic interactions of the sulfur atom with PKC or parts of the cellular membrane. [source] |