Detonation Properties (detonation + property)

Distribution by Scientific Domains


Selected Abstracts


Theoretical Study on Thermodynamic and Detonation Properties of Polynitrocubanes

PROPELLANTS, EXPLOSIVES, PYROTECHNICS, Issue 2 2009
Xue-Hai Ju
Abstract We investigated the heat of formation (,fH) of polynitrocubanes using density functional theory B3LYP and HF methods with 6-31G*, 6-311+G**, and cc-pVDZ basis sets. The results indicate that ,fH firstly decreases (nitro number m=0,2) and then increases (m=4,8) with each additional nitro group being introduced to the cubane skeleton. ,fH of octanitrocubane is predicted to be 808.08,kJ mol,1 at the B3LYP/6-311+G** level. The Gibbs free energy of formation (,fG) increases by about 40,60,kJ mol,1 with each nitro group being added to the cubane when the substituent number is fewer than 4, then ,fG increases by about 100,110,kJ mol,1 with each additional group being attached to the cubic skeleton. Both the detonation velocity and the pressure for polynitrocubanes increase as the number of substituents increases. Detonation velocity and pressure of octanitrocubane are substantially larger than the famous widely used explosive cyclotetramethylenetetranitramine (HMX). [source]


A theoretical investigation on the structures, densities, detonation properties, and pyrolysis mechanism of the nitro derivatives of phenols

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 9 2010
Guixiang Wang
Abstract The nitro derivatives of phenols are optimized to obtain their molecular geometries and electronic structures at the DFT-B3LYP/6-31G* level. Detonation properties are evaluated using the modified Kamlet,Jacobs equations based on the calculated densities and heats of formation. It is found that there are good linear relationships between density, detonation velocity, detonation pressure, and the number of nitro and hydroxy groups. Thermal stability and pyrolysis mechanism of the title compounds are investigated by calculating the bond dissociation energies (BDEs) at the unrestricted B3LYP/6-31G* level. The activation energies of H-transfer reaction is smaller than the BDEs of all bonds and this illustrates that the pyrolysis of the title compounds may be started from breaking OH bond followed by the isomerization reaction of H transfer. Moreover, the CNO2 bond with the smaller bond overlap population and the smaller BDE will also overlap may be before homolysis. According to the quantitative standard of energetics and stability as a high-energy density compound, pentanitrophenol essentially satisfies this requirement. In addition, we have discussed the effect of the nitro and hydroxy groups on the static electronic structural parameters and the kinetic parameter. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010 [source]


Theoretical studies on four-membered ring compounds with NF2, ONO2, N3, and NO2 groups

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 4 2008
Xiao-Wei Fan
Abstract Density functional theory (DFT) method has been employed to study the geometric and electronic structures of a series of four-membered ring compounds at the B3LYP/6-311G** and the B3P86/6-311G** levels. In the isodesmic reactions designed for the computation of heats of formation (HOFs), 3,3-dimethyl-oxetane, azetidine, and cyclobutane were chosen as reference compounds. The HOFs for N3 substituted derivations are larger than those of oxetane compounds with ONO2 and/or NF2 substituent groups. The HOFs for oxetane with ONO2 and/or NF2 substituent groups are negative, while the HOFs for N3 substituted derivations are positive. For azetidine compounds, the substituent groups within the azetidine ring affect the HOFs, which increase as the difluoroamino group being replaced by the nitro group. The magnitudes of intramolecular group interactions were predicted through the disproportionation energies. The strain energy (SE) for the title compounds has been calculated using homodesmotic reactions. For azetidine compounds, the NF2 group connecting N atom in the ring decrease the SE of title compounds. Thermal stability were evaluated via bond dissociation energies (BDE) at the UB3LYP/6-311G** level. For the oxetane compounds, the ONO2 bond is easier to break than that of the ring CC bond. For the azetidine and cyclobutane compounds, the homolysises of CNX2 and/or NNX2 (X = O, F) bonds are primary step for bond dissociation. Detonation properties of the title compounds were evaluated by using the Kamlet,Jacobs equation based on the calculated densities and HOFs. It is found that 1,1-dinitro-3,3-bis(difluoroamino)-cyclobutane, with predicted density of ca. 1.9 g/cm3, detonation velocity (D) over 9 km/s, and detonation pressure (P) of 41 GPa that are lager than those of TNAZ, is expected to be a novel candidate of high energy density materials (HEDMs). The detonation data of nitro-BDFAA and TNCB are also close to the requirements for HEDMs. © 2007 Wiley Periodicals, Inc. J Comput Chem, 2008 [source]


Nitroamino Triazoles: Nitrogen-Rich Precursors of Stable Energetic Salts

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 16 2008
Yangen Huang
Abstract 1-Nitroamino-1,2,3-triazole (5) was synthesized and its zwitterionic structure was established using single-crystal X-ray diffraction. The calculated detonation properties for 4-nitroamino-1,2,4-triazole (2) (P = 33.4 GPa, vD = 8793 m/s) and 1-nitroamino-1,2,3-triazole (5) (P = 33.0 GPa, vD = 8743 m/s) are comparable with RDX. A new family of energetic salts 7,21 based on either the 1-nitroamino-1,2,3-triazolate or the 4-nitroamino-1,2,4-triazolate anion were prepared and characterized by vibrational spectroscopy (IR), multinuclear NMR spectra, elemental analyses, density, TGA and DSC. The heats of formation (,fH°298) and detonation properties for these stable salts were calculated using Gaussian 03 and Cheetah 4.0, respectively. Comparison of the properties of the 1,2,3- and 1,2,4-triazolate salts indicates that while the 1,2,4-derivatives are more stable thermally, the 1,2,3-analogs invariably have higher heats of formation. In contrast to its salts, 1-nitroamino-1,2,3-triazole (5) is extremely shock-sensitive with an impact sensitivty of <1 J. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source]


A theoretical investigation on the structures, densities, detonation properties, and pyrolysis mechanism of the nitro derivatives of phenols

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, Issue 9 2010
Guixiang Wang
Abstract The nitro derivatives of phenols are optimized to obtain their molecular geometries and electronic structures at the DFT-B3LYP/6-31G* level. Detonation properties are evaluated using the modified Kamlet,Jacobs equations based on the calculated densities and heats of formation. It is found that there are good linear relationships between density, detonation velocity, detonation pressure, and the number of nitro and hydroxy groups. Thermal stability and pyrolysis mechanism of the title compounds are investigated by calculating the bond dissociation energies (BDEs) at the unrestricted B3LYP/6-31G* level. The activation energies of H-transfer reaction is smaller than the BDEs of all bonds and this illustrates that the pyrolysis of the title compounds may be started from breaking OH bond followed by the isomerization reaction of H transfer. Moreover, the CNO2 bond with the smaller bond overlap population and the smaller BDE will also overlap may be before homolysis. According to the quantitative standard of energetics and stability as a high-energy density compound, pentanitrophenol essentially satisfies this requirement. In addition, we have discussed the effect of the nitro and hydroxy groups on the static electronic structural parameters and the kinetic parameter. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010 [source]


Energetic Ethylene- and Propylene-Bridged Bis(nitroiminotetrazolate) Salts

CHEMISTRY - A EUROPEAN JOURNAL, Issue 13 2009
Young-Hyuk Joo Dr.
Abstract High energy density materials with ethylene- and propylene bis(5-nitroiminotetrazolate) as the anions are reported; all salts were fully characterized by IR, and 1H, 13C, and 15N NMR spectroscopy as well as elemental analyses. In addition, the heats of formation (,Hf) and the detonation pressures (P) and velocities (D) were calculated. The synthesis and detonation properties of high energy density materials with ethylene- and propylene bis(nitroiminotetrazolate) as the anions are reported; all salts were fully characterized by IR, and 1H, 13C, and 15N NMR spectroscopy as well as elemental analyses. In addition, the heats of formation (,Hf) were calculated with the Gaussian 3.0 suite of programs. By using the experimental values for the densities of the nitroiminotetrazolate salts, the detonation pressures (P) and velocities (D) were calculated using Cheetah 5.0. [source]