Deterministic Approach (deterministic + approach)

Distribution by Scientific Domains


Selected Abstracts


A deterministic seismic hazard map of India and adjacent areas

GEOPHYSICAL JOURNAL INTERNATIONAL, Issue 2 2003
Imtiyaz A. Parvez
SUMMARY A seismic hazard map of the territory of India and adjacent areas has been prepared using a deterministic approach based on the computation of synthetic seismograms complete with all main phases. The input data set consists of structural models, seismogenic zones, focal mechanisms and earthquake catalogues. There are few probabilistic hazard maps available for the Indian subcontinent, however, this is the first study aimed at producing a deterministic seismic hazard map for the Indian region using realistic strong ground motion modelling with the knowledge of the physical process of earthquake generation, the level of seismicity and wave propagation in anelastic media. Synthetic seismograms at a frequency of 1 Hz have been generated at a regular grid of 0.2°× 0.2° by the modal summation technique. The seismic hazard, expressed in terms of maximum displacement (Dmax), maximum velocity (Vmax), and design ground acceleration (DGA), has been extracted from the synthetic signals and mapped on a regular grid over the studied territory. The estimated values of the peak ground acceleration are compared with the observed data available for the Himalayan region and are found to be in agreement. Many parts of the Himalayan region have DGA values exceeding 0.6 g. The epicentral areas of the great Assam earthquakes of 1897 and 1950 in northeast India represent the maximum hazard with DGA values reaching 1.2,1.3 g. The peak velocity and displacement in the same region is estimated as 120,177 cm s,1 and 60,90 cm, respectively. [source]


Consistency of the spatial autocorrelation method with seismic interferometry and its consequence

GEOPHYSICAL PROSPECTING, Issue 3 2008
Toshiaki Yokoi
ABSTRACT We have cross-checked the conventional theory of the spatial autocorrelation method and the consequence of seismic interferometry: the retrieval of the elastodynamic Green's function. Their mutual consistency is almost complete. The basic formulas of the conventional spatial autocorrelation theory can be derived by an alternative approach based on the retrieval of the elastodynamic Green's function. The only discrepancy is found with the average of the complex coherence function over azimuth in a wavefield dependent on azimuth. It is hypothesized, in discussion, that this discrepancy is due to the way of representing the wavefield in the background theory of seismic interferometry that can produce only wavefields moderately dependent on azimuth and that the mentioned consequence of seismic interferometry can also only make sense in a wavefield moderately dependent on azimuth. Our field experiment with a wavefield dependent on azimuth showed that the consequence of seismic interferometry in the logical framework of the conventional spatial autocorrelation theory is appropriate under such degrees of approximation as the measure proposed in this study, i.e., the deviation of the total dispersion curves is between about 10 and 16 per cent at the maximum from those averaged over azimuth. The acceptance of the retrieval of Green's function gives a proper physical meaning to the complex coherence function: the real part of the elastodynamic Green's function normalized by its zero-offset version. This makes it possible to take a deterministic approach rather than the statistical one on which the conventional spatial autocorrelation method is based and gives fruitful new aspects and perspectives. For example, the formula for the multi-mode case is given and the possibility of exploration of two or three dimensional velocity structures is suggested. [source]


A deterministic approach to evaluate and implement monitored natural attenuation for chlorinated solvents

REMEDIATION, Issue 4 2007
Michael J. Truex
A US EPA directive and related technical protocol outline the information needed to determine if monitored natural attenuation (MNA) for chlorinated solvents is a suitable remedy for a site. For some sites, conditions such as complex hydrology or perturbation of the contaminant plume caused by an existing remediation technology (e.g., pump-and-treat) make evaluation of MNA using only field data difficult. In these cases, a deterministic approach using reactive transport modeling can provide a technical basis to estimate how the plume will change and whether it can be expected to stabilize in the future and meet remediation goals. This type of approach was applied at the Petro-Processors Inc. Brooklawn site near Baton Rouge, Louisiana, to evaluate and implement MNA. This site consists of a multicomponent nonaqueous-phase source area creating a dissolved groundwater contamination plume in alluvial material near the Mississippi River. The hydraulic gradient of the groundwater varies seasonally with changes in the river stage. Due to the transient nature of the hydraulic gradient and the impact of a hydraulic containment system operated at the site for six years, direct field measurements could not be used to estimate natural attenuation processes. Reactive transport of contaminants were modeled using the RT3D code to estimate whether MNA has the potential to meet the site-specific remediation goals and the requirements of the US EPA Office of Solid Waste and Emergency Response Directive 9200.4-17P. Modeling results were incorporated into the long-term monitoring plan as a basis for evaluating the effectiveness of the MNA remedy. As part of the long-term monitoring plan, monitoring data will be compared to predictive simulation results to evaluate whether the plume is changing over time as predicted and can be expected to stabilize and meet remediation goals. This deterministic approach was used to support acceptance of MNA as a remedy. © 2007 Wiley Periodicals, Inc. [source]