Detailed Kinetic Study (detailed + kinetic_study)

Distribution by Scientific Domains


Selected Abstracts


Recombinant human glucose-6-phosphate dehydrogenase

FEBS JOURNAL, Issue 14 2002
Evidence for a rapid-equilibrium random-order mechanism
Cloning and over-expression of human glucose 6-phosphate dehydrogenase (Glc6P dehydrogenase) has for the first time allowed a detailed kinetic study of a preparation that is genetically homogeneous and in which all the protein molecules are of identical age. The steady-state kinetics of the recombinant enzyme, studied by fluorimetric initial-rate measurements, gave converging linear Lineweaver,Burk plots as expected for a ternary-complex mechanism. Patterns of product and dead-end inhibition indicated that the enzyme can bind NADP+ and Glc6P separately to form binary complexes, suggesting a random-order mechanism. The Kd value for the binding of NADP+ measured by titration of protein fluorescence is 8.0 µm, close to the value of 6.8 µm calculated from the kinetic data on the assumption of a rapid-equilibrium random-order mechanism. Strong evidence for this mechanism and against either of the compulsory-order possibilities is provided by repeating the kinetic analysis with each of the natural substrates replaced in turn by structural analogues. A full kinetic analysis was carried out with deaminoNADP+ and with deoxyglucose 6-phosphate as the alternative substrates. In each case the calculated dissociation constant upon switching a substrate in a random-order mechanism (e.g. that for NADP+ upon changing the sugar phosphate) was indeed constant within experimental error as expected. The calculated rate constants for binding of the leading substrate in a compulsory-order mechanism, however, did not remain constant when the putative second substrate was changed. Previous workers, using enzyme from pooled blood, have variously proposed either compulsory-order or random-order mechanisms. Our study appears to provide unambiguous evidence for the latter pattern of substrate binding. [source]


Production, purification and thermal characterisation of invertase from a newly isolated Fusarium sp. under solid-state fermentation

INTERNATIONAL JOURNAL OF FOOD SCIENCE & TECHNOLOGY, Issue 7 2008
Iram Shaheen
Summary Production of invertase employing a newly isolated Fusarium sp. under solid-state fermentation was optimised. Different process parameters were optimised. The maximum enzyme activity under optimum conditions was 47.23 ± 2.12 U gds,1 with nitrogen additives. The enzyme was purified by ammonium sulphate precipitation, diethylaminoethyl cellulose ion-exchange chromatography and Sephadex gel filtration. This protocol gave 20.25-fold purification and 5.53% recovery. The optimum pH and temperature for activity were 5.0 and 50 °C. The Km and Vmax values for the enzyme were 8.33 mm and 21.48 ,mol min,1, respectively. A detailed kinetic study of thermal inactivation has been carried out. Enthalpy of activation (,H*) decreased when entropy (,S*) of activation increased at higher temperatures. Moreover, free energy of denaturation (,G*) increased at higher temperature making the enzyme thermally stable. A possible explanation for the thermal inactivation of invertase at higher temperatures is also discussed. [source]


THERMAL INACTIVATION KINETICS OF ALKALINE PHOSPHATASE IN BUFFER AND MILK

JOURNAL OF FOOD PROCESSING AND PRESERVATION, Issue 3 2006
S. FADILO
ABSTRACT A detailed kinetic study on the thermal inactivation of alkaline phosphatase (ALP) added into buffer and pasteurized milk and for ALP naturally present in raw cow's milk has been performed. Kinetic parameters (rate constant, k; decimal reduction time, D; activation energy, Ea; and z value) were evaluated based on the first-order rate model at 50,80C. The temperature sensitivity of the kinetic parameters was evaluated considering the Arrhenius-type Ea model. All kinetic behaviors were well described by the first-order model (r2 > 0.91). The D values increased with increasing temperature. Higher temperatures resulted in higher rates of enzyme inactivation as indicated by lower D values and higher k values. There are significant differences (P < 0.01) among the D values for ALP in buffer and milk at treated temperatures. The rate of enzyme inactivation was much more rapid in buffer than in pasteurized milk. The evaluated Ea values for ALP added into the buffer and pasteurized milk, and for ALP naturally present in raw milk were 97.2, 149.9 and 207.8 kJ/mol, respectively. The inactivation kinetics of ALP during heat treatment was found to be dependent on the composition of the medium, and the time and temperature of the heat treatment. [source]


Kinetics of Lysine and Other Amino Acids Loss During Extrusion Cooking of Maize Grits

JOURNAL OF FOOD SCIENCE, Issue 2 2003
S. Ilo
ABSTRACT: Maize grits were extrusion-cooked in a conical, counter-rotating twin-screw extruder at different barrel temperatures, feed moistures, and screw speeds. Residence time distribution was measured by a dye tracer technique. Experiments with lysine-fortified maize grits showed a 1st order reaction for lysine loss. A detailed kinetic study has been performed for the losses during extrusion cooking of lysine, cystine, and arginine. The 1st-order rate constants were dependent mainly on product temperature and feed moisture, whereas screw speed had no influence. Activation energy of lysine, arginine, and cystine loss was 127, 68, and 76 kJ/mol, respectively. Shear stress significantly affected the rate constants of amino acids loss in extrusion cooking. [source]


Combined Pressure,temperature Inactivation of Alkaline Phosphatase in Bovine Milk: A Kinetic Study

JOURNAL OF FOOD SCIENCE, Issue 1 2000
L. Ludikhuyze
ABSTRACT: A detailed kinetic study on pressure-temperature inactivation of alkaline phosphatase has been performed in the pressure range 0.1 to 725 MPa at temperatures between 25 and 63 °C. Inactivation could be accurately described by a first order kinetic model, allowing D-values to be calculated. According to the thermal death time terminology, zr - and zp -values were calculated, expressing temperature and pressure dependence respectively. However, at high temperature, pressure dependence could not be calculated unambiguously. D-values firstly increased with increasing pressure up to 300 MPa and then decreased with further pressure increase, showing thermal inactivation to be counteracted by low pressure. Finally, a global model describing the D-value as a function of pressure and temperature has been formulated. [source]