Home About us Contact | |||
Desorption Time (desorption + time)
Selected AbstractsSolid phase microextraction-high performance liquid chromatographic determination of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in the presence of sodium dodecyl sulfate surfactantJOURNAL OF SEPARATION SCIENCE, JSS, Issue 12 2008Gaurav Abstract A simple and sensitive method has been developed using preconcentration technique solid phase microextraction (SPME) and analytical technique HPLC-UV for the determination of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) from the environmental samples. Aqueous solution of anionic surfactant SDS was used for the extraction of both nitramine high explosives, viz., HMX and RDX from soil samples which were subsequently sorbed on SPME fiber. The static desorption was carried out in the desorption chamber of the SPME-HPLC interface in the presence of mobile phase ACN/methanol/water (30:35:35) and the subsequent chromatographic analysis at a flow rate of 0.5 mL/min and detection at 230 nm. For this purpose, a C18, 5 ,m RP analytical column was used as a separation medium in this method. Several parameters relating to SPME, e.g., adsorption/desorption time, concentration of salt, stirring rate, etc., were optimized. The method was linear over the range of 20,400 ng/mL for HMX and RDX standards in the presence of surfactant in aqueous phase, respectively. The correlation coefficient (R2) for HMX and RDX are 0.9998 and 0.9982, respectively. With SPME, the detection limits (S/N = 3) in ng/mL are 0.05 and 0.1 for HMX and RDX, respectively in the presence of the SDS surfactant. The developed method has been applied successfully to the analysis of real environmental samples like bore well water, river water, and ground alluvial soil. [source] Design of a two-step pulsed pressure-swing adsorption-based oxygen concentratorAICHE JOURNAL, Issue 2 2010V. Rama Rao Abstract A two-step pulsed pressure-swing adsorption (PPSA) process has been modeled to assess the extent to which an oxygen concentrator might be miniaturized for medical applications. The process consists of a single bed of packed adsorbent particles that is alternately pressurized and depressurized at the feed end. An enriched oxygen product is withdrawn at ambient pressure from the product end when the bed is pressurized at the feed end. The product end remains closed during depressurization. The model development addresses the manner in which axial dispersion enters into the describing equations and the formulation of proper boundary conditions, both of which have not been handled rigorously in some prior modeling studies. The describing equations are solved using COMSOL® Multiphysics software. The effect on the performance of the adsorption time, desorption time, bed length, particle diameter, and imposed pressure drop across the bed have been investigated. An interesting novel result is that for a chosen particle size, bed length, and applied pressure drop, there is an optimum combination of adsorption and desorption times that maximizes the product purity. The results suggest that there are operating windows for both 5A and partially Ag-exchanged Li-substituted 13X zeolite adsorbents wherein the product oxygen purity is greater than 90%. At a given product flow rate within this operating window, the extent of miniaturization is limited by the (maximum) cycling frequency that is practically achievable. Sizing of an oxygen concentrator for personal medical applications is also discussed. A principal conclusion is that a compact oxygen concentrator capable of producing a highly oxygen-enriched product is possible using commercially available adsorbents and implementable operating conditions. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source] Membrane protected conductive polymer as micro-SPE device for the determination of triazine herbicides in aquatic mediaJOURNAL OF SEPARATION SCIENCE, JSS, Issue 8 2010Habib Bagheri Abstract A micro-SPE technique was developed by fabricating a rather small package including a polypropylene membrane shield containing the appropriate sorbent. The package was used for the extraction of some triazine herbicides from aqueous samples. Solvent desorption was subsequently performed in a microvial and an aliquot of extractant was injected into GC-MS. Various sorbents including aniline- ortho -phenylene diamine copolymer, newly synthesized, polypyrrole, multiwall carbon nanotube, C18 and charcoal were examined as extracting media. Among them, conductive polymers exhibited better performance. Influential parameters including extraction and desorption time, desorption solvent and the ionic strength were optimized. The developed method proved to be rather convenient and offers sufficient sensitivity and good reproducibility. The detection limits of the method under optimized conditions were in the range of 0.01,0.04,ng/mL. The RSDs at a concentration level of 0.1,ng/mL were obtained between 4.5 and 9.3% (n=5). The calibration curves of analytes showed linearity in the range of 0.05,10,ng/mL. The developed method was successfully applied to the extraction of selected triazines from real water samples. The whole procedure showed to be conveniently applicable and quite easy to manipulate. [source] Enantioselective analysis of mirtazapine, demethylmirtazapine and 8-hydroxy mirtazapine in human urine after solid-phase microextractionJOURNAL OF SEPARATION SCIENCE, JSS, Issue 2 2010Fernando José Malagueño de Santana Abstract A selective and reproducible off-line solid-phase microextraction procedure was developed for the simultaneous enantioselective determination of mirtazapine (MRT), demethylmirtazapine and 8-hydroxymirtazapine in human urine. CE was used for optimization of the extraction procedure whereas LC-MS was used for method validation and application. The influence of important factors in the solid-phase microextraction efficiency is discussed, such as the fiber coatings, extraction time, pH, ionic strength, temperature and desorption time. Before extraction, human urine samples were submitted to enzymatic hydrolysis at 37°C for 16,h. Then, the enzyme was precipitated with trichloroacetic acid and the pH was adjusted to 8 with 1,mol/L pH 11 phosphate buffer solution. In the extraction, the analytes were transferred from the aqueous solution to the polydimethylsiloxane-divinylbenzene fiber coating and then desorbed in methanol. The mean recoveries were 5.4, 1.7 and 1.0% for MRT, demethylmirtazapine and 8-hydroxymirtazapine enantiomers, respectively. The method was linear over the concentration range of 62,1250,ng/mL. The within-day and between-day assay precision and accuracy were lower than 15%. The method was successfully employed in a preliminary cumulative urinary excretion study after administration of racemic MRT to a healthy volunteer. [source] Simple sample transfer technique by internally expanded desorptive flow for needle trap devicesJOURNAL OF SEPARATION SCIENCE, JSS, Issue 12 2008In-Yong Eom Abstract Needle trap devices (NTDs) are improving in simplicity and usefulness for sampling volatile organic compounds (VOCs) since their first introduction in early 2000s. Three different sample transfer methods have been reported for NTDs to date. All methods use thermal desorption and simultaneously provide desorptive flow to transfer desorbed VOCs into a GC separation column. For NTDs having ,side holes', GC carrier gas enters a ,side hole' and passes through sorbent particles to carry desorbed VOCs, while for NTD not having a ,side hole', clean air as desorptive flow can be provided through a needle head by a air tight syringe to sweep out desorbed VOCs or water vapor has been reported recently to be used as desorptive flow. We report here a new simple sample transfer technique for NTDs, in which no side holes and an external desorptive flow are required. When an NTD enriched by a mixture of benzene, toluene, ethylbenzene, and xylene (BTEX) or n -alkane mixture (C6,C15) is exposed to the hot zone of GC injector, the expanding air above the packed sorbent transfers the desorbed compounds from the sorbent to the GC column. This internal air expansion results in clean and sharp desorption profiles for BTEX and n -alkane mixture with no carryover. The effect of desorption temperature, desorption time, and overhead volumes was studied. Decane having vapor pressure of ,1 Torr at 20°C showed ,1% carryover at the moderate thermal desorption condition (0.5 min at 250°C). [source] Optimisation of the headspace-solid phase microextraction for organomercury and organotin compound determination in sediment and biotaJOURNAL OF SEPARATION SCIENCE, JSS, Issue 4 2008Alejandra Delgado Abstract Headspace solid-phase microextraction was optimised for the simultaneous preconcentration of methylmercury (MeHg+), monobutyltin, dibutyltin, tributyltin, monophenyltin (MPhT), diphenyltin (DPhT), and triphenyltin (TPhT) from sediments and biota. Extraction time (3,24 min), extraction temperature (20,90°C), desorption time (1,10.4 min), desorption temperature (152,260°C), and sample volume (5,22 mL) were simultaneously optimised, while variables such as fibre type (30 ,m polydimethylsiloxane, PDMS), pH (acetic acid/sodium acetate, HOAc/NaOAc, 2 mol/L, pH , 4.8), the concentration of the derivatisation agent (sodium tetraethylborate, NaBEt4, 0.1% m/v), and the ionic strength (fixed by the buffer solution) were kept constant. The variables were optimised according to the experiments proposed by the MultiSimplex program and the responses were considered in order to establish the optimum conditions. The repeatability (relative standard deviation, RSD, 5,20.6%) and limits of detection (LODs, 0.05,0.97 ng/g) of the overall method were also estimated. The lowest precisions were obtained for DPhT and TPhT. The optimised preconcentration method was applied to the determination of MeHg+, butyl- and phenyltins in certified reference materials (IAEA-405 MeHg+ in estuarine sediment, BCR-646 butyl- and phenyltins in marine sediment, BCR-463 MeHg+ in tuna fish, DOLT-2 MeHg+ in dogfish liver, and BCR-477 butyltins in mussel tissue) by GC with microwave-induced plasma/atomic-emission detection. [source] Determination of diisopropylfluorophosphate in rat plasma and brain tissue by headspace solid-phase microextraction gas chromatography/mass spectrometryRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 19 2008Meng Xu A simple, sensitive and rapid method for the determination of diisopropylfluorophosphate (DFP) in rat plasma and brain tissue using headspace solid-phase microextraction (HS-SPME) and gas chromatography/mass spectrometry (GC/MS) is presented. A 65,µm polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber was selected for sampling. The main parameters affecting the SPME process such as extraction and desorption temperature, extraction and desorption time, salt addition, and fiber preheating time were optimized in each matrix to enhance the extraction efficiency of the method. The lower limits of quantitation for DFP in plasma and brain tissue were 1,ng/mL and 3,ng/g, respectively. The method showed good linearity over the range from 1,100,ng/mL in plasma and 3,300,ng/g in brain tissue with correlation coefficient (R2) values higher than 0.995. The precision and accuracy for intra-day and inter-day were less than 10%. The relative recoveries in plasma and brain for DFP were greater than 50%. Stability tests including autosampler and freeze and thaw were also investigated. This validated method was successfully applied to study the neurobehavioral effects of low-level organophosphate exposures. Copyright © 2008 John Wiley & Sons, Ltd. [source] Optimization of a novel headspace,solid-phase microextraction,gas chromatographic method by means of a Doehlert uniform shell design for the analysis of trace level ethylene oxide residuals in sterilized medical devicesBIOMEDICAL CHROMATOGRAPHY, Issue 6 2009Michael P. DiCicco Abstract Medical devices sterilized by ethylene oxide (EtO) retain trace quantities of EtO residuals, which may irritate patients' tissue. Reliably quantifying trace level EtO residuals in small medical devices requires an extremely sensitive analytical method. In this research, a Doehlert uniform shell design was utilized in obtaining a response surface to optimize a novel headspace,solid-phase microextraction,gas chromatographic (HS-SPME-GC) method developed for analyzing trace levels of EtO residuals in sterilized medical devices, by evaluating sterilized, polymer-coated, drug-eluting cardiovascular stents. The effects of four independent experimental variables (HS-SPME desorption time, extraction temperature, GC inlet temperature and extraction time) on GC peak area response of EtO were investigated simultaneously and the most influential experimental variables determined were extraction temperature and GC inlet temperature, with the fitted model showing no evidence of lack-of-fit. The optimized HS-SPME-GC method demonstrated overall good linearity/linear range, accuracy, repeatability, reproducibility, absolute recovery and high sensitivity. This novel method was successfully applied to analysis of trace levels of EtO residuals in sterilized/aerated cardiovascular stents of various lengths and internal diameter, where, upon heating, trace EtO residuals fully volatilized into HS for extraction, thereby nullifying matrix effects. As an alternative, this novel HS-SPME-GC method can offer higher sensitivity compared with conventional headspace analyzer-based sampling. Copyright © 2009 John Wiley & Sons, Ltd. [source] Design of a two-step pulsed pressure-swing adsorption-based oxygen concentratorAICHE JOURNAL, Issue 2 2010V. Rama Rao Abstract A two-step pulsed pressure-swing adsorption (PPSA) process has been modeled to assess the extent to which an oxygen concentrator might be miniaturized for medical applications. The process consists of a single bed of packed adsorbent particles that is alternately pressurized and depressurized at the feed end. An enriched oxygen product is withdrawn at ambient pressure from the product end when the bed is pressurized at the feed end. The product end remains closed during depressurization. The model development addresses the manner in which axial dispersion enters into the describing equations and the formulation of proper boundary conditions, both of which have not been handled rigorously in some prior modeling studies. The describing equations are solved using COMSOL® Multiphysics software. The effect on the performance of the adsorption time, desorption time, bed length, particle diameter, and imposed pressure drop across the bed have been investigated. An interesting novel result is that for a chosen particle size, bed length, and applied pressure drop, there is an optimum combination of adsorption and desorption times that maximizes the product purity. The results suggest that there are operating windows for both 5A and partially Ag-exchanged Li-substituted 13X zeolite adsorbents wherein the product oxygen purity is greater than 90%. At a given product flow rate within this operating window, the extent of miniaturization is limited by the (maximum) cycling frequency that is practically achievable. Sizing of an oxygen concentrator for personal medical applications is also discussed. A principal conclusion is that a compact oxygen concentrator capable of producing a highly oxygen-enriched product is possible using commercially available adsorbents and implementable operating conditions. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source] Accessibility of simple gases in disordered carbons: theory and simulationASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 5 2009T. X. Nguyen Abstract We present a review of our recent studies on the accessibility of simple gases (Ar, N2, CH4 and CO2) in disordered microporous carbons using transition state theory (TST) and molecular simulation techniques. A realistic carbon model rather than the slit-pore approximation is utilised, providing more accurate understanding of complex adsorption equilibrium and dynamics behaviour at the molecular level in porous carbons, especially kinetic restriction of adsorbate molecules through highly constricted pore mouths of coals and molecular sieve carbons (MSC). This kinetic restriction leads to a molecular sieving effect which plays a vital role in gas separation using the MSCs. In particular, the realistic carbon model of a saccharose char used in a recent study was obtained by hybrid reverse Monte Carlo simulation. The time of adsorption or desorption of the single gas molecule between two neighbouring pores through a highly constricted window of the realistic saccharose char model was determined using TST. Finally, the validation of TST calculated results of adsorption and desorption times against experimental measurements as well as molecular dynamics simulation is also presented in this article. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source] |