Desorption Electrospray Ionization Mass Spectrometry (desorption + electrospray_ionization_mass_spectrometry)

Distribution by Scientific Domains


Selected Abstracts


HPTLC/DESI-MS imaging of tryptic protein digests separated in two dimensions,

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 12 2008
Sofie P. Pasilis
Abstract Desorption electrospray ionization mass spectrometry (DESI-MS) was demonstrated as a method to detect and identify peptides from two-dimensional separations of cytochrome c and myoglobin tryptic digests on ProteoChrom HPTLC Cellulose sheets. Data-dependent tandem mass spectra were acquired during lane scans across the TLC plates. Peptides and the corresponding proteins were identified using a protein database search software. Two-dimensional distributions of identified peptides were mapped for each separated protein digest. Sequence coverages for cytochrome c and myoglobin were 81 and 74%, respectively. These compared well with those determined using the more standard HPLC/ESI-MS/MS approach (89 and 84%, respectively). Preliminary results show that use of more sensitive instrumentation has the potential for improved detection of peptides with low Rf values and improvement in sequence coverage. However, less multiple charging and more sodiation were seen in HPTLC/DESI-MS spectra relative to HPLC/ESI-MS spectra, which can affect peptide identification by MS/MS. Methods to increase multiple charging and reduce the extent of sodiation are currently under investigation. Published in 2008 by John Wiley & Sons, Ltd. [source]


Desorption electrospray ionization mass spectrometric analysis of organophosphorus chemical warfare agents using ion mobility and tandem mass spectrometry

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 11 2010
Paul A. D'Agostino
Desorption electrospray ionization mass spectrometry (DESI-MS) has been applied to the direct analysis of sample media for target chemicals, including chemical warfare agents (CWA), without the need for additional sample handling. During the present study, solid-phase microextraction (SPME) fibers were used to sample the headspace above five organophosphorus CWA, O -isopropyl methylphosphonofluoridate (sarin, GB), O -pinacolyl methylphosphonofluoridate (soman, GD), O -ethyl N,N -dimethyl phosphoramidocyanidate (tabun, GA), O -cyclohexyl methylphosphonofluoridate (cyclohexyl sarin, GF) and O -ethyl S-2-diisopropylaminoethyl methyl phosphonothiolate (VX) spiked into glass headspace sampling vials. Following sampling, the SPME fibers were introduced directly into a modified ESI source, enabling rapid and safe DESI of the toxic compounds. A SYNAPT HDMSÔ instrument was used to acquire time-aligned parallel (TAP) fragmentation data, which provided both ion mobility and MSn (n,=,2 or 3) data useful for the confirmation of CWA. Unique ion mobility profiles were acquired for each compound and characteristic product ions of the ion mobility separated ions were produced in the TriwaveÔ transfer collision region. Up to six full scanning MSn spectra, containing the [M,+,H]+ ion and up to seven diagnostic product ions, were acquired for each CWA during SPME fiber analysis. A rapid screening approach, based on the developed methodology, was applied to several typical forensic media, including Dacron sampling swabs spiked with 5,µg of CWA. Background interference was minimal and the spiked CWA were readily identified within one minute on the basis of the acquired ion mobility and mass spectrometric data. Copyright © 2010 Crown in the right of Canada. Published by John Wiley & Sons, Ltd. [source]


Improved imaging resolution in desorption electrospray ionization mass spectrometry,

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 17 2008
Vilmos Kertesz
The imaging resolution of desorption electrospray ionization mass spectrometry (DESI-MS) was investigated using printed patterns on paper and thin-layer chromatography (TLC) plate surfaces. Resolution approaching 40,µm was achieved with a typical DESI-MS setup, which is approximately 5 times better than the best resolution reported previously. This improvement was accomplished with careful control of operational parameters (particularly spray tip-to-surface distance, solvent flow rate, and spacing of lane scans). In addition, an appropriately strong analyte/surface interaction and uniform surface texture on the size scale no larger than the desired imaging resolution were required to achieve this resolution. Overall, conditions providing the smallest possible effective desorption/ionization area in the DESI impact plume region and minimizing the analyte redistribution on the surface during analysis led to improved DESI-MS imaging resolution. Published in 2008 by John Wiley & Sons, Ltd. [source]