Design Optimization Problem (design + optimization_problem)

Distribution by Scientific Domains


Selected Abstracts


Die shape design optimization of sheet metal stamping process using meshfree method

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 12 2001
Nam Ho Kim
Abstract A die shape design sensitivity analysis (DSA) and optimization for a sheet metal stamping process is proposed based on a Lagrangian formulation. A hyperelasticity-based elastoplastic material model is used for the constitutive relation that includes a large deformation effect. The contact condition between a workpiece and a rigid die is imposed through the penalty method with a modified Coulomb friction model. The domain of the workpiece is discretized by a meshfree method. A continuum-based DSA with respect to the rigid die shape parameter is formulated using a design velocity concept. The die shape perturbation has an effect on structural performance through the contact variational form. The effect of the deformation-dependent pressure load to the design sensitivity is discussed. It is shown that the design sensitivity equation uses the same tangent stiffness matrix as the response analysis. The linear design sensitivity equation is solved at each converged load step without the need of iteration, which is quite efficient in computation. The accuracy of sensitivity information is compared to that of the finite difference method with an excellent agreement. A die shape design optimization problem is solved to obtain the desired shape of the workpiece to minimize spring-back effect and to show the feasibility of the proposed method. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Force Transmissibility Performance of Parallel Manipulators

JOURNAL OF FIELD ROBOTICS (FORMERLY JOURNAL OF ROBOTIC SYSTEMS), Issue 11 2003
Wen-Tung Chang
In this paper, a new force transmission index called the mean force transmission index (MFTI) is proposed, and the force transmissibility analysis procedure is established for parallel manipulators. The MFTI is an extended definition of the force transmission index (FTI) introduced by the authors previously. It is shown that the FTI is a function of the input velocity ratio (IVR) for a multi-DOF mechanism of the same configuration. To represent the force transmissibility by a definite value, the MFTI is defined as the mean value of the normalized FTIs function over the whole range of the IVR. The force transmissibility analysis of two planar parallel manipulators is illustrated using the MFTI method. The result is compared with that of the Jacobian matrix method and the joint force index (JFI) method. It shows that, especially for symmetric parallel manipulators, an approximate inverse-proportionality relationship exists between the JFI and MFTI, and between the maximum input torque/force and MFTI. It is concluded that the MFTI can be used as a quantitative measure of the force transmissibility performance for parallel manipulators. In the end, a design optimization problem is studied by taking the global force transmission index as the objective function. © 2003 Wiley Periodicals, Inc. [source]


Bicriteria product design optimization: An efficient solution procedure using AND/OR trees

NAVAL RESEARCH LOGISTICS: AN INTERNATIONAL JOURNAL, Issue 6 2002
S. Raghavan
Competitive imperatives are causing manufacturing firms to consider multiple criteria when designing products. However, current methods to deal with multiple criteria in product design are ad hoc in nature. In this paper we present a systematic procedure to efficiently solve bicriteria product design optimization problems. We first present a modeling framework, the AND/OR tree, which permits a simplified representation of product design optimization problems. We then show how product design optimization problems on AND/OR trees can be framed as network design problems on a special graph,a directed series-parallel graph. We develop an enumerative solution algorithm for the bicriteria problem that requires as a subroutine the solution of the parametric shortest path problem. Although this parametric problem is hard on general graphs, we show that it is polynomially solvable on the series-parallel graph. As a result we develop an efficient solution algorithm for the product design optimization problem that does not require the use of complex and expensive linear/integer programming solvers. As a byproduct of the solution algorithm, sensitivity analysis for product design optimization is also efficiently performed under this framework. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 574,592, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10031 [source]


Approximation methods for reliability-based design optimization problems

GAMM - MITTEILUNGEN, Issue 2 2007
Irfan Kaymaz
Abstract Deterministic optimum designs are obtained without considering of uncertainties related to the problem parameters such as material parameters (yield stress, allowable stresses, moment capacities, etc.), external loadings, manufacturing errors, tolerances, cost functions, which could lead to unreliable designs, therefore several methods have been developed to treat uncertainties in engineering analysis and, more recently, to carry out design optimization with the additional requirement of reliability, which referred to as reliability-based design optimization. In this paper, two most common approaches for reliability-based design optimization are reviewed, one of which is reliability-index based approach and the other performancemeasure approach. Although both approaches can be used to evaluate the probabilistic constraint, their use can be prohibitive when the associated function evaluation required by the probabilistic constraint is expensive, especially for real engineering problems. Therefore, an adaptive response surface method is proposed by which the probabilistic constraint is replaced with a simple polynomial function, thus the computational time can be reduced significantly as presented in the example given in this paper. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Augmented Lagrangian coordination for distributed optimal design in MDO

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 13 2008
S. Tosserams
Abstract Quite a number of coordination methods have been proposed for the distributed optimal design of large-scale systems consisting of a number of interacting subsystems. Several coordination methods are known to have numerical convergence difficulties that can be explained theoretically. The methods for which convergence proofs are available have mostly been developed for so-called quasi-separable problems (i.e. problems with individual subsystems coupled only through a set of linking variables, not through constraints and/or objectives). In this paper, we present a new coordination approach for multidisciplinary design optimization problems with linking variables as well as coupling objectives and constraints. Two formulation variants are presented, offering a large degree of freedom in tailoring the coordination algorithm to the design problem at hand. The first, centralized variant introduces a master problem to coordinate coupling of the subsystems. The second, distributed variant coordinates coupling directly between subsystems. Our coordination approach employs an augmented Lagrangian penalty relaxation in combination with a block coordinate descent method. The proposed coordination algorithms can be shown to converge to Karush,Kuhn,Tucker points of the original problem by using the existing convergence results. We illustrate the flexibility of the proposed approach by showing that the analytical target cascading method of Kim et al. (J. Mech. Design-ASME 2003; 125(3):475,480) and the augmented Lagrangian method for quasi-separable problems of Tosserams et al. (Struct. Multidisciplinary Opt. 2007, to appear) are subclasses of the proposed formulations. Copyright © 2007 John Wiley & Sons, Ltd. [source]


Bicriteria product design optimization: An efficient solution procedure using AND/OR trees

NAVAL RESEARCH LOGISTICS: AN INTERNATIONAL JOURNAL, Issue 6 2002
S. Raghavan
Competitive imperatives are causing manufacturing firms to consider multiple criteria when designing products. However, current methods to deal with multiple criteria in product design are ad hoc in nature. In this paper we present a systematic procedure to efficiently solve bicriteria product design optimization problems. We first present a modeling framework, the AND/OR tree, which permits a simplified representation of product design optimization problems. We then show how product design optimization problems on AND/OR trees can be framed as network design problems on a special graph,a directed series-parallel graph. We develop an enumerative solution algorithm for the bicriteria problem that requires as a subroutine the solution of the parametric shortest path problem. Although this parametric problem is hard on general graphs, we show that it is polynomially solvable on the series-parallel graph. As a result we develop an efficient solution algorithm for the product design optimization problem that does not require the use of complex and expensive linear/integer programming solvers. As a byproduct of the solution algorithm, sensitivity analysis for product design optimization is also efficiently performed under this framework. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 574,592, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10031 [source]