Home About us Contact | |||
Desert Bighorn Sheep (desert + bighorn_sheep)
Selected AbstractsHighways block gene flow and cause a rapid decline in genetic diversity of desert bighorn sheepECOLOGY LETTERS, Issue 10 2005Clinton W. Epps Abstract The rapid expansion of road networks has reduced connectivity among populations of flora and fauna. The resulting isolation is assumed to increase population extinction rates, in part because of the loss of genetic diversity. However, there are few cases where loss of genetic diversity has been linked directly to roads or other barriers. We analysed the effects of such barriers on connectivity and genetic diversity of 27 populations of Ovis canadensis nelsoni (desert bighorn sheep). We used partial Mantel tests, multiple linear regression and coalescent simulations to infer changes in gene flow and diversity of nuclear and mitochondrial DNA markers. Our findings link a rapid reduction in genetic diversity (up to 15%) to as few as 40 years of anthropogenic isolation. Interstate highways, canals and developed areas, where present, have apparently eliminated gene flow. These results suggest that anthropogenic barriers constitute a severe threat to the persistence of naturally fragmented populations. [source] Optimizing dispersal and corridor models using landscape geneticsJOURNAL OF APPLIED ECOLOGY, Issue 4 2007CLINTON W. EPPS Summary 1Better tools are needed to predict population connectivity in complex landscapes. ,Least-cost modelling' is one commonly employed approach in which dispersal costs are assigned to distinct habitat types and the least-costly dispersal paths among habitat patches are calculated using a geographical information system (GIS). Because adequate data on dispersal are usually lacking, dispersal costs are often assigned solely from expert opinion. Spatially explicit, high-resolution genetic data may be used to infer variation in animal movements. We employ such an approach to estimate habitat-specific migration rates and to develop least-cost connectivity models for desert bighorn sheep Ovis canadensis nelsoni. 2Bighorn sheep dispersal is thought to be affected by distance and topography. We incorporated both factors into least-cost GIS models with different parameter values and estimated effective geographical distances among 26 populations. We assessed which model was correlated most strongly with gene flow estimates among those populations, while controlling for the effect of anthropogenic barriers. We used the best-fitting model to (i) determine whether migration rates are higher over sloped terrain than flat terrain; (ii) predict probable movement corridors; (iii) predict which populations are connected by migration; and (iv) investigate how anthropogenic barriers and translocated populations have affected landscape connectivity. 3Migration models were correlated most strongly with migration when areas of at least 10% slope had 1/10th the cost of areas of lower slope; thus, gene flow occurred over longer distances when ,escape terrain' was available. Optimal parameter values were consistent across two measures of gene flow and three methods for defining population polygons. 4Anthropogenic barriers disrupted numerous corridors predicted to be high-use dispersal routes, indicating priority areas for mitigation. However, population translocations have restored high-use dispersal routes in several other areas. Known intermountain movements of bighorn sheep were largely consistent with predicted corridors. 5Synthesis and applications. Population genetic data provided sufficient resolution to infer how landscape features influenced the behaviour of dispersing desert bighorn sheep. Anthropogenic barriers that block high-use dispersal corridors should be mitigated, but population translocations may help maintain connectivity. We conclude that developing least-cost models from similar empirical data could significantly improve the utility of these tools. [source] Elevation and connectivity define genetic refugia for mountain sheep as climate warmsMOLECULAR ECOLOGY, Issue 14 2006CLINTON W. EPPS Abstract Global warming is predicted to affect the evolutionary potential of natural populations. We assessed genetic diversity of 25 populations of desert bighorn sheep (Ovis canadensis nelsoni) in southeastern California, where temperatures have increased and precipitation has decreased during the 20th century. Populations in low-elevation habitats had lower genetic diversity, presumably reflecting more fluctuations in population sizes and founder effects. Higher-elevation habitats acted as reservoirs of genetic diversity. However, genetic diversity was also affected by population connectivity, which has been disrupted by human development. Restoring population connectivity may be necessary to buffer the effects of climate change on this desert-adapted ungulate. [source] |