Depth Data (depth + data)

Distribution by Scientific Domains


Selected Abstracts


Organic litter: dominance over stones as a source of interrill flow roughness on low-gradient desert slopes at Fowlers Gap, arid western NSW, Australia

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 1 2003
David Dunkerley
Abstract Thirty-six runoff plot experiments provide data on flow depths, speeds, and Darcy,Weisbach friction coefficients (f) on bare soil surfaces, and surfaces to which were added sufficient extra plant litter or surface stones to provide projected cover of 5, 10 and 20 per cent. Precision flow depth data were derived with a computer-controlled gantry and needle gauge for two different discharges for each plot treatment. Taking a fixed flow intensity (Reynolds number, Re = 150) for purposes of comparison shows means of f = 17·7 for bare soil surfaces, f = 11·4 for added stone treatments, and f = 23·8 for added litter treatments. Many individual values of f for stone treatments are lower than for the bare soil surface, but all litter treatments show increases in fcompared to bare soil. The lowering of f in stone treatments relates to the submerged volume that the stones occupied, and the associated concentration of flow onto a smaller part of the plot surface. This leads to locally higher flow intensities and lower frictional drag along threads of flow that the obstacles create. Litter causes higher frictional drag because the particles are smaller, and, for the same cover fraction, are 100 times more numerous and provide 20 times the edge or perimeter length. Along these edges, which in total exceed 2·5 m g,1 (equivalent to 500 m m,2 for a loading of 2 t ha,1), surface tension draws up water from between the litter particles. This reduces flow depth there, and as a consequence of the lower flow intensity, frictional drag rises. Furthermore, no clear passage remains for the establishment of flow threads. These findings apply to shallow interrill flows in which litter is largely immobile. The key new result from these experiments is that under these conditions, a 20 per cent cover of organic litter can generate interrill frictional retardation that exceeds by nearly 41 per cent that of a bare soil surface, and twice that contributed by the same cover fraction of surface stones. Even greater dominance by litter can be anticipated at the many dryland sites where litter covers exceed those tested here. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Estimating diesel degradation rates from N2, O2 and CO2 concentration versus depth data in a loamy sand

EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 1 2007
J. Van De Steene
Summary The degradation rate of the pollutant is often an important parameter for designing and maintaining an active treatment system or for determining the rate of natural attenuation. A quasi-steady-state gas transport model based on Fick's law with a correction term for advective flux, for estimating diesel degradation rates from N2, O2 and CO2 concentration versus depth data, was evaluated in a laboratory column study. A loamy sand was spiked with diesel fuel at 0, 1000, 5000 and 10 000 mg kg,1 soil (dry weight basis) and incubated for 15 weeks. Soil gas was sampled weekly at 6 selected depths in the columns and analysed for O2, CO2 and N2 concentrations. The agreement between the measured and the modelled concentrations was good for the untreated soil (R2= 0.60) and very good for the soil spiked with 1000 mg kg,1 (R2= 0.96) and 5000 mg kg,1 (R2= 0.97). Oxygen consumption ranged from ,0.15 to ,2.25 mol O2 m,3 soil day,1 and CO2 production ranged from 0.20 to 2.07 mol CO2 m,3 soil day,1. A significantly greater mean O2 consumption (P < 0.001) and CO2 production (P < 0.005) over time was observed for the soils spiked with diesel compared with the untreated soil, which suggests biodegradation of the diesel substrate. Diesel degradation rates calculated from respiration data were 1.5,2.1 times less than the change in total petroleum hydrocarbon content. The inability of this study to correlate respiration data to actual changes in diesel concentration could be explained by volatilization, long-term sorption of diesel hydrocarbons to organic matter and incorporation of diesel hydrocarbons into microbial biomass, aspects of which require further investigation. [source]


3D float tracking: in situ floodplain roughness estimation

HYDROLOGICAL PROCESSES, Issue 2 2009
Menno Straatsma
Abstract This paper presents a novel technique to quantify in situ hydrodynamic roughness of submerged floodplain vegetation: 3D float tracking. This method uses a custom-built floating tripod that is released on the inundated floodplain and tracked from shore by a robotic total station. Simultaneously, an acoustic Doppler current profiler (ADCP) collects flow velocity profiles and water depth data. Roughness values are derived from two methods based on (1) run-averaged values of water depth, slope and flow velocity to compute the roughness based on the Chézy equation, assuming uniform flow, (2) the equation for one-dimensional free surface flow in a moving window. A sensitivity analysis using synthetic data proved that the median value of the roughness, derived using method 2, is independent of (1) the noise in water levels, up to 9 mm, (2) bottom surface slope, and (3) topographic undulations. The window size should be at least 40 m for a typical lowland river setup. Field measurements were carried out on two floodplain sections with an average vegetation height of 0·030 (Arnhem) and 0·043 m (Dreumel). Method 1 resulted in a Nikuradse roughness length of 0·08 m for both locations. Method 2 gave 0·12 m for Arnhem and 0·19 m for Dreumel. In Arnhem, a spatial pattern of roughness values was present, which might be related to fractional vegetation cover or vegetation density during the flood peak. 3D float tracking proved a flexible and detailed method for roughness determination in the absence of waves, and provided an unrestricted view from shore. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Measurement sampling and scaling for deep montane snow depth data

HYDROLOGICAL PROCESSES, Issue 4 2006
S. R. Fassnacht
Abstract The resolution of snow depth measurements was scaled from a nominal horizontal resolution of approximately 1·5 m to 3, 5, 10, 20, and 30 m using averaging (AVG) and resampling with a uniform random stratified sampling (RSS) scheme. The raw snow depth values were computed from airborne light detection and ranging data by differencing summer elevation measurements from winter snow surface elevations. Three montane study sites from the NASA Cold Lands Processes Experiment, each covering an 1100 m × 1100 m area, were used. To examine scaling, log,log semi-variograms with 50 log-width bins were created for both of the different subsetting methods, i.e. RSS and AVG. From the raw data, a scale break, going from a structured to a nearly spatially random system, was observed in each of the log,log variograms. For each site, the scale break was still detectable at slightly greater than the resampling resolution for the RSS scheme, but at approximately twice the subsetting resolution for the AVG scheme. The resolution required to identify the scale break was still from 5 to 10 m, depending upon the location and sampling method. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Statistical probability distribution of snow depth at the model sub-grid cell spatial scale

HYDROLOGICAL PROCESSES, Issue 2 2005
Dr Wolf-Dietrich Marchand
Abstract Comprehensive snow depth data, collected using georadar and hand probing, were used for statistical analyses of snow depths inside 1 km grid cells. The sub-grid cell spatial scale was 100 m. Statistical distribution functions were found to have varying parameters, and an attempt was made to connect these statistical parameters to different terrain variables. The results showed that the two parameters mean and standard deviation of snow depth were significantly related to the sub-grid terrain characteristics. Linear regression models could explain up to 50% of the variation for both of the snowcover parameters mentioned. Copyright © 2004 John Wiley & Sons, Ltd. [source]


A study on the effect of Eurasian snow on the summer monsoon circulation and rainfall using a spectral GCM

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 8 2006
S. K. Dash
Abstract Many studies based on observed data indicate the inverse relationship between the Eurasian snow cover/depth and the Indian summer monsoon rainfall (ISMR). The purpose of this study is to confirm the inverse snow,ISMR relationship by using the observed snow depth data as boundary conditions in the spectral general circulation model (GCM) of Indian Institute of Technology, Delhi (IITD), and to examine the influence of Eurasian snow depth on the monsoon circulation. The original model belonging to the European Centre for Medium range Weather Forecasts (ECMWF) at resolution T21 has been modified extensively to a higher resolution of T80L18 at IITD. A two-dimensional Lanczos digital filter has been used to represent the orography realistically. The Historical Soviet Daily Snow Depth (HSDSD) version II data set has been used for conducting sensitivity experiments using the above model. Two sensitivity experiments have been designed, corresponding to two contrasting cases: one with high Eurasian snow depth in spring followed by deficient ISMR and the second with low snow depth followed by excess ISMR. The difference fields of mean monsoon circulation simulated in the above two experiments are examined in detail in order to confirm the influence of Eurasian snow depth on ISMR and to examine the Asian summer monsoon circulation and rainfall. Copyright © 2006 Royal Meteorological Society [source]


Lagged teleconnections between snow depth in northern Eurasia, rainfall in Southeast Asia and sea-surface temperatures over the tropical Pacific Ocean

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 13 2001
Hengchun Ye
Abstract This study shows that above-(below-)normal winter snow depth over European Russia and corresponding below-(above-)normal snow depth over central Siberia is associated with reduced (increased) summer monsoon rainfall over southern and western India and eastern Pakistan, and above-(below-)normal sea-surface temperatures (SSTs) over the eastern and central tropical Pacific Ocean during the following winters. The connection is slightly stronger when snow depth over European Russia is above normal than below normal. These results are derived from an examination of 60 years (1936,1995) of winter snow depth data and SSTs, and 45 years (1951,1995) of summer precipitation records. The results of this study suggest that winter snow depth over the western rather than the eastern portion of Eurasia is critical to Southeast Asian summer monsoon rainfall and eastern tropical Pacific SSTs during the following seasons. Copyright © 2001 Royal Meteorological Society [source]


Facial Soft Tissue Depths in Craniofacial Identification (Part II): An Analytical Review of the Published Sub-Adult Data,

JOURNAL OF FORENSIC SCIENCES, Issue 6 2008
Carl N. Stephan Ph.D.
Abstract:, Prior research indicates that while statistically significant differences exist between subcategories of the adult soft tissue depth data, magnitudes of difference are small and possess little practical meaning when measurement errors and variations between measurement methods are considered. These findings raise questions as to what variables may or may not hold meaning for the sub-adult data. Of primary interest is the effect of age, as these differences have the potential to surpass the magnitude of measurement error. Data from the five studies in the literature on sub-adults which describe values for single integer age groups were pooled and differences across the ages examined. From 1 to 18 years, most soft tissue depth measurements increased by less than 3 mm. These results suggest that dividing the data for children into more than two age groups is unlikely to hold many advantages. Data were therefore split into two groups with the division point corresponding to the mid-point of the observed trends and main data density (0,11 and 12,18 years; division point = 11.5 years). Published sub-adult data for seven further studies which reported broader age groups were pooled with the data above to produce the final tallied soft tissue depth tables. These tables hold the advantages of increased sample sizes (pogonion has greater than 1770 individuals for either age group) and increased levels of certainty (as random and opposing systematic errors specific to each independent study should average out when the data are combined). [source]