Depression-like Behavior (depression-like + behavior)

Distribution by Scientific Domains


Selected Abstracts


Cognitive and non-cognitive behaviors in an APPswe/PS1 bigenic model of Alzheimer's disease

GENES, BRAIN AND BEHAVIOR, Issue 2 2009
M. Filali
Neuropsychiatric signs are critical in primary caregiving of Alzheimer patients and yet have been relatively ignored in murine models. In the present study, APPswe/PS1 bigenic mice had higher levels of irritability than non-transgenic controls as measured in the touch escape test. Moreover, APPswe/PS1 mice showed poorer nest building than controls and a higher duration of immobility in the forced swimming assay. These results are concordant with the hypothesis of increased apathy and depression-like behavior in an Alzheimer's disease model. In addition, APPswe/PS1 bigenic mice were deficient in retention of passive avoidance learning and left,right discrimination learning, concordant with previous findings in other Alzheimer-like models. [source]


Voluntary exercise induces anxiety-like behavior in adult C57BL/6J mice correlating with hippocampal neurogenesis

HIPPOCAMPUS, Issue 3 2010
Johannes Fuss
Abstract Several studies investigated the effect of physical exercise on emotional behaviors in rodents; resulting findings however remain controversial. Despite the accepted notion that voluntary exercise alters behavior in the same manners as antidepressant drugs, several studies reported opposite or no effects at all. In an attempt to evaluate the effect of physical exercise on emotional behaviors and brain plasticity, we individually housed C57BL/6J male mice in cages equipped with a running wheel. Three weeks after continuous voluntary running we assessed their anxiety- and depression-like behaviors. Tests included openfield, dark-light-box, elevated O-maze, learned helplessness, and forced swim test. We measured corticosterone metabolite levels in feces collected over a 24-h period and brain-derived neurotrophic factor (BDNF) in several brain regions. Furthermore, cell proliferation and adult hippocampal neurogenesis were assessed using Ki67 and Doublecortin. Voluntary wheel running induced increased anxiety in the openfield, elevated O-maze, and dark-light-box and higher levels of excreted corticosterone metabolites. We did not observe any antidepressant effect of running despite a significant increase of hippocampal neurogenesis and BDNF. These data are thus far the first to indicate that the effect of physical exercise in mice may be ambiguous. On one hand, the running-induced increase of neurogenesis and BDNF seems to be irrelevant in tests for depression-like behavior, at least in the present model where running activity exceeded previous reports. On the other hand, exercising mice display a more anxious phenotype and are exposed to higher levels of stress hormones such as corticosterone. Intriguingly, numbers of differentiating neurons correlate significantly with anxiety parameters in the openfield and dark-light-box. We therefore conclude that adult hippocampal neurogenesis is a crucial player in the genesis of anxiety. © 2009 Wiley-Liss, Inc. [source]


Exacerbated loss of cell survival, neuropeptide Y-immunoreactive (IR) cells, and serotonin-IR fiber lengths in the dorsal hippocampus of the aged flinders sensitive line "depressed" rat: Implications for the pathophysiology of depression?

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 6 2006
H. Husum
Abstract Impairment of hippocampal neurogenesis has been proposed to provide a cellular basis for the development of major depression. Studies have shown that serotonin (5-HT) and neuropeptide Y (NPY) may be involved in stimulating cell proliferation in the dentate gyrus. The Flinders-sensitive line (FSL) rat represents a genetic model of depression with characterized 5-HT and NPY abnormalities in the hippocampus. Consequently, it could be hypothesized that hippocampal neurogenesis in the FSL rat would be impaired. The present study examined the relationship among 1) number of BrdU-immunoreactive (IR) cells, 2) NPY-IR cells in the dentate gyrus, and 3) length of 5-HT-IR fibers in the dorsal hippocampus, as well as volume and number of 5-HT-IR cells in the dorsal raphé nucleus, in adult and aged FSL rats and control Flinders-resistant line (FRL) rats. Surprisingly, adult FSL rats had significantly more BrdU-IR and NPY-IR cells compared with adult FRL rats. However, aging caused an exacerbated loss of these cell types in the FSL strain compared with FRL. The aged FSL rats also had shortened 5-HT-IR fibers in the dorsal hippocampus, indicative of an impaired 5-HT innervation of this area, compared with FRL. These results suggest that, for "depressed" FSL rats, compared with FRL rats, aging is associated with an excacerbated loss of newly formed cells in addition to NPY-IR cells and 5-HT-IR dendrites in the hippocampus. These observations may be of relevance to the depression-like behavior of the FSL rat and, by inference, to the pathophysiology of depression. © 2006 Wiley-Liss, Inc. [source]


Voluntary exercise induces anxiety-like behavior in adult C57BL/6J mice correlating with hippocampal neurogenesis

HIPPOCAMPUS, Issue 3 2010
Johannes Fuss
Abstract Several studies investigated the effect of physical exercise on emotional behaviors in rodents; resulting findings however remain controversial. Despite the accepted notion that voluntary exercise alters behavior in the same manners as antidepressant drugs, several studies reported opposite or no effects at all. In an attempt to evaluate the effect of physical exercise on emotional behaviors and brain plasticity, we individually housed C57BL/6J male mice in cages equipped with a running wheel. Three weeks after continuous voluntary running we assessed their anxiety- and depression-like behaviors. Tests included openfield, dark-light-box, elevated O-maze, learned helplessness, and forced swim test. We measured corticosterone metabolite levels in feces collected over a 24-h period and brain-derived neurotrophic factor (BDNF) in several brain regions. Furthermore, cell proliferation and adult hippocampal neurogenesis were assessed using Ki67 and Doublecortin. Voluntary wheel running induced increased anxiety in the openfield, elevated O-maze, and dark-light-box and higher levels of excreted corticosterone metabolites. We did not observe any antidepressant effect of running despite a significant increase of hippocampal neurogenesis and BDNF. These data are thus far the first to indicate that the effect of physical exercise in mice may be ambiguous. On one hand, the running-induced increase of neurogenesis and BDNF seems to be irrelevant in tests for depression-like behavior, at least in the present model where running activity exceeded previous reports. On the other hand, exercising mice display a more anxious phenotype and are exposed to higher levels of stress hormones such as corticosterone. Intriguingly, numbers of differentiating neurons correlate significantly with anxiety parameters in the openfield and dark-light-box. We therefore conclude that adult hippocampal neurogenesis is a crucial player in the genesis of anxiety. © 2009 Wiley-Liss, Inc. [source]