Depositional Settings (depositional + setting)

Distribution by Scientific Domains


Selected Abstracts


Hydrologic and geomorphic effects of temporary ice-dammed lake formation during jökulhlaups

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 7 2003
Matthew J. Roberts
Abstract Glacial outburst ,oods (jökulhlaups) occur frequently in glaciated environments, and the resultant ,ooding causes geomorphic change and, in some instances, damage to local infrastructure. During some jökulhlaups, ,oodwater is stored temporarily in ice-marginal locations. In July 1999, a linearly rising jökulhlaup burst from Sólheimajökull, Iceland. During this remarkable event, subglacial ,oodwater pooled transiently in two relict ice-dammed lake basins, before draining suddenly back into Sólheimajökull. The signi,cance of such rapid formation and attendant drainage of temporary ice-dammed lakes during jökulhlaups has not been addressed. Consequently, this paper: (i) assesses the hydrologic and geomorphic effects of temporary ice-dammed lake formation caused by lake-basin ,retro-,lling'; and (ii) discusses the impact and signi,cance of transient retro-,lling under jökulhlaup conditions. Pre- and post-,ood ,eldwork at Sólheimajökull enabled the impact and signi,cance of lake-basin retro-,lling to be assessed. Field evidence demonstrates that the July 1999 jökulhlaup had an unusually rapid rise to peak discharge, resulting in subglacial ,oodwater being purged to ice-marginal locations. The propensity for temporary retro-,lling was controlled by rapid expulsion of ,oodwater from Sólheimajökull, coincident with locations suitable for ,oodwater storage. Floodwater inundated both ice-marginal lake basins, permitting signi,cant volumes of sediment deposition. Coarse-grained deltas prograding from the ice margin and boulders perched on scoured bedrock provide geomorphic records of sudden retro-,lling. The depositional characteristics of lake-basin deposits at Sólheimajökull are similar to jökulhlaup sediments documented in proglacial settings elsewhere; however, their depositional setting and association with ice-marginal landforms is distinctive. Findings suggest that temporary ice-dammed lake formation and drainage has the capacity to alter the shape of the ,ood hydrograph, especially if drainage of a temporary lake is superimposed on the original jökulhlaup. Deposits associated with lake-basin retro-,lling have a long-term preservation potential that could help to identify temporary ice-dammed lake formation in modern and ancient glacial environments. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Structural patterns in coarse gravelriver beds: typology, survey and assessment of the roles of grain size and river regime

GEOGRAFISKA ANNALER SERIES A: PHYSICAL GEOGRAPHY, Issue 1 2002
Lea Wittenberg
The concept of river-bed stability as indexed by the occurrence of stable bed forms was examined in humid-temperate perennial streams and in Mediterranean ephemeral streams. The study examined the structural patterns of bed forms and their spatial distribution between temperate-humid and Mediterranean streams. Study sites in Northumberland, UK, and Mt. Carmel, Israel, were selected for their morphometric similarity, despite the contrast in climate, vegetation and hydrological regime. Fieldwork was based on a large number of Wolman grain size distributions and structure measurements along cross-sections at seven sites; Differences in mean grain size of bed structures were estimated using the general linear model (GLM) procedure and Duncan's multiple range test. Based on field evidence, river-bed configurations were divided into structural categories, according to the depositional setting of each measured particle on the river bed. Statistical analysis confirmed former qualitative descriptions of small-scale bed forms. The study identified spatial segregation in bed form distribution. In general, 30,40%of the bed material in the surveyed perennial streams was clustered, in contrast to approximately 10%in the ephemeral counterparts. The sorting index revealed higher values for the perennial streams, namely 2.39,3.59 compared with 1.73,2.07 for the ephemeral counterparts. It is suggested that the degree of sediment sorting and the proportion of clusters are strongly related. Sediment sorting, sediment supply and the hydrological regime explain the mechanism of cluster formation. It is assumed that climate shifts or human interference within river basins might affect the regional characteristic flood hydrograph, and consequently alter the sedimentary character of the river bed. In the case where river bed stability is reduced owing to changes in cluster bed form distribution, rivers that normally do not yield a significant amount of sediment might be subject to notable sedimentation problems. [source]


AN AEOLIANITE IN THE UPPER DALAN MEMBER (KHUFF FORMATION), SOUTH PARS FIELD, IRAN

JOURNAL OF PETROLEUM GEOLOGY, Issue 2 2010
G. Frébourg
A laterally continuous, 3m thick oolitic grainstone has been studied in cores from two wells from the South Pars field (offshore Iran). This high porosity but low permeability interval occurs at the top of the gas-bearing succession in the Permian Upper Dalan Member, and is equivalent to the informally-defined K4 unit of the Khuff Formation. This interval can easily be traced between the wells and overlies high-energy marine deposits. It is composed of oomouldic, fine-grained azooic grainstones with cm-thick coarser-grained layers. Horizontal to oblique lamination or steep foresets were observed together with pinstripe lamination. Petrographic observations indicate a clean oomouldic grainstone with very thin chitonic rims associated with pedogenetic imprints as first-generation cements. Later cements include early vadose meniscus and pendant cements in coarser-grained layers and pseudophreatic cements in the finer-grained material with a tighter pore network, prior to ooid dissolution. Rhizoliths were observed in cores and thin-sections. The pedogenic imprints and the early vadose cementation, both related to emergence, as well as the presence of pinstripe lamination, suggest an aeolian depositional setting. This interval is the first aeolianite recorded within the Khuff Formation or equivalent units, and the first hydrocarbon-bearing carbonate aeolianite described in a hydrocarbon-producing unit. The discovery of aeolianites has important implications for regional sequence-stratigraphic interpretations and reservoir volume calculations. These deposits do not conform to classic subaqueous sequence stratigraphy and do not record eustatic variations in the associated marine basin. Their recognition is crucial for well-to-well correlations. [source]


OIL-PRONE LOWER CARBONIFEROUS COALS IN THE NORWEGIAN BARENTS SEA: IMPLICATIONS FOR A PALAEOZOIC PETROLEUM SYSTEM

JOURNAL OF PETROLEUM GEOLOGY, Issue 2 2010
J.H. Van Koeverden
In this study, we assess the oil generation potential of Lower Carboniferous, liptinite-rich coals in the Tettegras Formation on the Finnmark Platform, southern Norwegian Barents Sea. Oil from these coals has been expelled into intercalated sandstones. The coals may have contributed to petroleum recorded in well 7128/4,1 on the Finnmark Platform and may constitute a new Palaeozoic source rock in the Barents Sea. The Tettegras Formation coals contain up to 80 vol.% liptinite (mineral matter free base) and have low oxygen indices. Hydrogen indices up to 367 mg HC/g TOC indicate liquid hydrocarbon potential. In wells 7128/4,1 and 7128/6,1, the coals have vitrinite reflectance Ro= 0.75,0.85 %. Compared to shale and carbonate source rocks, expulsion from coal in general begins at higher maturities (Ro= 0.8,0.9% and Tmax= 444,453°C). Thus, the coals in the wells are mostly immature with regard to oil expulsion. The oil in well 7128/4,1 most likely originates from a more mature part of the Tettegras Formation in the deeper northern part of the Finnmark Platform. Wide variations in biomarker facies parameters and ,13C isotope values indicate a heterogeneous paralic depositional setting. The preferential retention by coal strata of naphthenes (e.g. terpanes and steranes) and aromatic compounds, compared to n-alkanes and acyclic isoprenoids, results in a terrigenous and waxy oil. This oil however contains marine biomarkers derived from the intercalated shales and siltstones. It is therefore important to consider the entire coal-bearing sequence, including the intercalated shales, in terms of source rock potential. Coals of similar age occur on Svalbard and Bjørnøya. The results of this study therefore suggest that a Lower Carboniferous coaly source rock may extend over large areas of the Norwegian Barents Sea. This source rock is mature in areas where the otherwise prolific Upper Jurassic marine shales are either immature or missing and may constitute a new Palaeozoic coal-sourced petroleum system in the Barents Sea. [source]


Widespread syn-sedimentary deformation on a muddy deep-water basin-floor: the Vischkuil Formation (Permian), Karoo Basin, South Africa

BASIN RESEARCH, Issue 4 2009
W. C. Van Der Merwe
ABSTRACT The ,380-m-thick mudstone,siltstone-dominated Vischkuil Formation represents the initiation phase of a 1.3-km-thick prograding basin floor to slope to shelf succession that marks a significant increase in the rate of siliciclastic sediment supply to the early Karoo Basin in the Permian. In the upper Vischkuil Formation three well exposed, widespread (,3000 km2) 10,70-m-thick intervals of deformed strata are encased within undeformed sediments. Such chaotic mass movement deposits that are mappable over areas comparable with seismic-scale mass transport deposits are commonly associated with submarine slope settings. However, the surrounding lithofacies and the correlation of distinctive marker beds indicate that these deformation intervals developed in a distal low gradient basin floor setting. The deformed intervals comprise a lower division of tight down-flow verging folds dissected by thrust planes that sole out onto a highly sheared décollement surface that are interpreted as slides. The lower divisions are overlain by an upper division of chaotic lithofacies with large contorted clasts of sandstone supported by a fine-grained matrix interpreted as a debrite. The juxtaposition of these lithofacies, the distribution of thickness of the divisions, and their close kinematic relationships indicate that the emplacement of the debris-flows triggered and drove the underlying slide, in a low-gradient distal setting. Individual beds in the deformed intervals can be mapped laterally into undeformed strata indicating limited movement of the slide. Therefore, widespread zones of syn-sedimentary deformation in deep-water settings do not necessarily indicate a slope setting and should not be used as single criterion to determine depositional setting. When associated with major debrites they may be developed on a flat basin floor. [source]


Facies development, depositional settings and sequence stratigraphy across the Ordovician,Silurian boundary: a new perspective from the Barrandian area of the Czech Republic

GEOLOGICAL JOURNAL, Issue 2 2006
torch
Abstract The Hirnantian and Llandovery sedimentary succession of the Barrandian area has been assigned to middle and outer clastic-shelf depositional settings, respectively. Deposition was influenced by the remote Gondwanan glaciation and subsequent, long-persisting, post-glacial anoxia triggered by a current-driven upwelling system. High-resolution graptolite stratigraphy, based upon 19 formally defined biozones,largely interval zones,and five subzones, enabled a detailed correlation between 42 surface sections and boreholes, and enabled linking of the sedimentary record, graptoloid fauna dynamics, organic-content fluctuations and spectral gamma-ray curves. The Hirnantian and Llandovery succession has been subdivided into four biostratigraphically dated third-order sequences (units 1,4). Time,spatial facies distribution recorded early and late Hirnantian glacio-eustatic sea-level lowstands separated by a remarkable mid-Hirnantian rise in sea-level. A major part of the post-glacial sea-level rise took place within the late Hirnantian. The highstand of Unit 2 is apparently at the base of the Silurian succession. Short-term relative sea-level drawdown and a third-order sequence boundary followed in the early Rhuddanian upper acuminatus Zone. Early Aeronian and late Telychian sea-level highstands and late Aeronian drawdown of likely eustatic origin belong to units 3 and 4. Sea-level rise culminated in the late Telychian, which may also be considered as a highstand episode of a second-order Hirnantian,early Silurian cycle. Facies and sequence-stratigraphic analysis supports recent interpretations on nappe structures in the core part of the Ordovician,Middle Devonian Prague Synform of the Barrandian. Copyright © 2006 John Wiley & Sons, Ltd. [source]


The stress sensitivity of shaley sandstones

GEOPHYSICAL PROSPECTING, Issue 2 2007
Colin MacBeth
ABSTRACT The link between the stress sensitivity of shaley sandstones and their porosity and clay content is investigated. This is achieved by firstly fitting a compliance-based stress-sensitivity law to laboratory measurements of ultrasonic velocity taken from four sets of reservoir sandstones, extracted from a variety of depositional settings. Correlations are then sought between the independent parameters of this law and the porosity or clay fraction of the rocks, which are then subsequently interpreted in terms of framework or pore-space-related microstructural clay models. The general conclusion drawn from the results is that both of the parameters defining the stress-sensitivity law (the asymptotic modulus and the stress-dependent excess compliance) clearly vary with porosity. However, only the asymptotic modulus shows a convincing trend with clay and there is little observed variation of the stress-dependent compliance with clay. There is therefore a resultant variation of stress sensitivity with clay, but it is controlled only by the asymptotic modulus. The analysis also concludes that all four data sets fall into a framework-related category of clay model. [source]


Devonian monospecific assemblages: new insights into the ecology of reduced-oxygen depositional settings

LETHAIA, Issue 4 2007
DIANA L. BOYER
Low-diversity fossil assemblages interpreted as representing dysaerobic communities are common in the Phanerozoic rock record, and those composed of a single species have particular utility for recognizing the lowest bottom-water oxygen levels. An unusually high-diversity of clades including three rhynchonelliform, two linguliform, and one bivalve species occur in monospecific assemblages within Middle and Upper Devonian black shales of New York State. These six taxa are interpreted to be adapted to extremely reduced bottom-water oxygen levels as inferred from detailed sedimentological data and their repeated monospecific occurrence; however these groups represent two distinct ecologies. Three of these taxa are restricted to sediments deposited under the lowest dysaerobic conditions, while the other three taxa, unlike other fossils characteristic of reduced-oxygen levels, also occur in and are even dominant in high-diversity assemblages. The rhynchonellid brachiopod Eumetabolotoechia multicostata is the most abundant taxon within these units and has a remarkable ecological range as dominant from the lowest dysaerobic zone to near-normal marine oxygen levels. These Devonian groups, when present in monospecific assemblages, have utility for characterizing the lowest dysaerobic zone where trace fossil assemblages, most commonly used to describe these low-oxygen depositional settings, are absent or poorly developed. [source]


Multiphase cooling and exhumation of the southern Adelaide Fold Belt: constraints from apatite fission track data

BASIN RESEARCH, Issue 1 2000
H. J. Gibson
Data from apatite fission track analysis are presented for 20 outcrop samples collected in the southern Adelaide Fold Belt, South Australia. Interpretation of these data, with the aid of numerical models which allow inference of multiphase cooling histories, indicate three discrete cooling events that are likely to correlate with sedimentation events in surrounding depositional settings. An event beginning some time after 85 Ma (Late Cretaceous) was characterized by cooling throughout the study area from temperatures of roughly 50 to 70 °C. An event beginning at 300,270 Ma (Late Palaeozoic) was characterized by cooling from temperatures >120 °C in all areas except for the Mount Lofty Ranges and Murray Bridge region, where peak temperatures were only 95,115 °C prior to Palaeozoic cooling. Some samples from these subregions of relatively cool Late Palaeozoic temperatures also retain evidence for even earlier cooling from temperatures >120 °C, beginning prior to 350 Ma. We interpret the post 85-Ma event as the consequence of regional exhumation from a depth of 1.0,1.6 km. The Late Palaeozoic event (300,270 Ma) is interpreted as cooling associated with the termination of the Alice Springs Orogeny, while cooling prior to 350 Ma probably represents the final stages of Early Middle Palaeozoic unroofing of the southern Adelaide Fold Belt. The results highlight the importance of regional, episodic postorogenic exhumation of Palaeozoic fold belts, where , in some cases , conventional methods have erroneously suggested relatively long-term stability. [source]