Home About us Contact | |||
Density Treatments (density + treatment)
Selected AbstractsTransmission dynamics of an iridescent virus in an experimental mosquito population: the role of host densityECOLOGICAL ENTOMOLOGY, Issue 4 2005Carlos F. Marina Abstract., 1.,The transmission of insect pathogens cannot be adequately described by direct linear functions of host and pathogen density due to heterogeneity generated from behavioural or physiological traits, or from the spatial distribution of pathogen particles. Invertebrate iridescent viruses (IIVs) can cause patent and lethal infection or a covert sub-lethal infection in insects. Aedes aegypti larvae were exposed to suspensions of IIV type 6 at two densities. High larval density increased the prevalence of aggression resulting in potentially fatal wounding. 2.,The overall prevalence of infection (patent + covert) was positively influenced by host density and increased with exposure time in both densities. The survival time of patently infected insects was extended by , 5 days compared with non-infected insects. 3.,Maximum likelihood models based on the binomial distribution were fitted to empirical results. A model incorporating heterogeneity in host susceptibility by inclusion of a pathogen-free refuge was a significantly better fit to data than an all-susceptible model, indicating that transmission is non-linear. The transmission coefficient (,) did not differ with host density whereas the faction of the population that occupied the pathogen-free refuge (,R) was significantly reduced at high host density compared with the low density treatment. 4.,The transmission of free-living infective stages of an IIV in Ae. aegypti larvae is non-linear, probably because of density-related changes in the frequency of aggressive encounters between hosts. This alters host susceptibility to infection and effectively reduces the proportion of hosts that occupy the pathogen-free refuge. [source] Density-dependent mortality is mediated by foraging activity for prey fish in whole-lake experimentsJOURNAL OF ANIMAL ECOLOGY, Issue 4 2003Peter A. Biro Summary 1Whereas the effects of density-dependent growth and survival on population dynamics are well-known, mechanisms that give rise to density dependence in animal populations are not well understood. We tested the hypothesis that the trade-off between growth and mortality rates is mediated by foraging activity and habitat use. Thus, if depletion of food by prey is density-dependent, and leads to greater foraging activity and risky habitat use, then visibility and encounter rates with predators must also increase. 2We tested this hypothesis by experimentally manipulating the density of young rainbow trout (Oncorhynchus mykiss) at risk of cannibalism, in a replicated single-factor experiment using eight small lakes, during an entire growing season. 3We found no evidence for density-dependent depletion of daphnid food in the nearshore refuge where most age-0 trout resided. Nonetheless, the proportion of time spent moving by individual age-0 trout, the proportion of individuals continuously active, and use of deeper habitats was greater in high density populations than in low density populations. Differences in food abundance among lakes had no effect on measures of activity or habitat use. 4Mortality of age-0 trout over the growing season was higher in high density populations, and in lakes with lower daphnid food abundance. Therefore, population-level mortality of age-0 trout is linked to greater activity and use of risky habitats by individuals at high densities. We suspect that food resources were depleted at small spatial and temporal scales not detected by our plankton sampling in the high density treatment, because food-dependent activity and habitat use by age-0 trout occurs in our lakes when food abundance is experimentally manipulated (Biro, Post & Parkinson, in press). [source] Effect of salinity on carrying capacity of adult Nile tilapia Oreochromis niloticus L. in recirculating systemsAQUACULTURE RESEARCH, Issue 16 2006M A Kabir Chowdhury Abstract Effect of salinity on carrying capacity of a recirculation system for Nile tilapia, Oreochromis niloticus L.; production was assessed. Survival, growth and feed conversion ratio of adult Nile tilapia fed 30% crude protein diet for 88 days were measured at three different salinity levels (8, 15 and 25 g L,1) and two stocking densities (20 and 40 m,3) in three independent recirculating systems. Highest survival (98%) and a linear growth in net biomass (P<0.01) was observed in both densities at 8 g L,1 and in 20 m,3 treatment at 15 g L,1. Highest net biomass growth was observed in the 40 m,3 stocking density treatment at 8 g L,1 salinity level (P<0.05). Overall biomass growth was significantly affected by salinity indicating a decrease in Nile tilapia carrying capacity with increased salinity. About 11 000 kg ha,1 crop,1 of Nile tilapia can be obtained in recirculating systems at 8 g L,1 salinity, significantly higher than the net production at 15 g L,1 (5200 kg ha,1 crop,1) and 22 g L,1 (4425 kg ha,1 crop,1). [source] The relative importance of latitude matching and propagule pressure in the colonization success of an invasive forbECOGRAPHY, Issue 6 2006John L. Maron Factors that influence the early stages of invasion can be critical to invasion success, yet are seldom studied. In particular, broad pre-adaptation to recipient climate may importantly influence early colonization success, yet few studies have explicitly examined this. I performed an experiment to determine how similarity between seed source and transplant site latitude, as a general indicator of pre-adaptation to climate, interacts with propagule pressure (100, 200 and 400 seeds/pot) to influence early colonization success of the widespread North American weed, St. John's wort Hypericum perforatum. Seeds originating from seven native European source populations were sown in pots buried in the ground in a field in western Montana. Seed source populations were either similar or divergent in latitude to the recipient transplant site. Across seed density treatments, the match between seed source and recipient latitude did not affect the proportion of pots colonized or the number of individual colonists per pot. In contrast, propagule pressure had a significant and positive effect on colonization. These results suggest that propagules from many climatically divergent source populations can be viable invaders. [source] Crowding and disease: effects of host density on response to infection in a butterfly,parasite interactionECOLOGICAL ENTOMOLOGY, Issue 5 2009ELIZABETH LINDSEY Abstract. 1. Hosts experiencing frequent variation in density are thought to benefit from allocating more resources to parasite defence when density is high (,density-dependent prophylaxis'). However, high density conditions can increase intra-specific competition and induce physiological stress, hence increasing host susceptibility to infection (,crowding-stress hypothesis'). 2. We studied monarch butterflies (Danaus plexippus) and quantified the effects of larval rearing density on susceptibility to the protozoan parasite Ophryocystis elektroscirrha. Larvae were inoculated with parasite spores and reared at three density treatments: low, moderate, and high. We examined the effects of larval density on parasite loads, host survival, development rates, body size, and wing melanism. 3. Results showed an increase in infection probability with greater larval density. Monarchs in the moderate and high density treatments also suffered the greatest negative effects of parasite infection on body size, development rate, and adult longevity. 4. We observed greater body sizes and shorter development times for monarchs reared at moderate densities, and this was true for both unparasitised and parasite-treated monarchs. We hypothesise that this effect could result from greater larval feeding rates at moderate densities, combined with greater physiological stress at the highest densities. 5. Although monarch larvae are assumed to occur at very low densities in the wild, an analysis of continent-wide monarch larval abundance data showed that larval densities can reach high levels in year-round resident populations and during the late phase of the breeding season. Treatment levels used in our experiment captured ecologically-relevant variation in larval density observed in the wild. [source] Structural heterogeneity and productivity of a tall fescue pasture grazed rotationally by cattle at four stocking densitiesGRASSLAND SCIENCE, Issue 1 2008Maria Silvia Cid Abstract The spatial heterogeneity in the structure and the productivity of the vegetation was examined in a tall fescue (Festuca arundinacea Schreb.) pasture rotationally grazed at four stocking densities in the Pampean region of Argentina. The examined pasture was grazed at the stocking densities of 3.6, 4.6, 5.6 and 6.6 animals ha,1 with a two-paddock 14-day rotational grazing system. Spatial distribution of plant height was examined as well as the percentages of short patch area (heavily utilized patches) or tall patch area (areas ungrazed or lightly defoliated). In addition, biomass, growth rate and relative growth rate were assessed for both short and tall patches. Grazing generated patchiness in vegetation structure and growth at all stocking densities. Increased stocking density caused an increase in the percentage of the short patch area in the paddocks. Short patches had relatively less live biomass than tall ones, but their relative growth rate was 31% higher than that of tall patches (0.021 ± 0.007 vs 0.016 ± 0.005 g DM g DM,1 day,1). The increase in stocking density enlarged the proportion of short patch areas with higher relative growth rate. The relative growth rate (average between short and tall patches) of the two highest stocking densities was 61.7% higher than that of the low stocking density treatments (0.023 ± 0.006 vs 0.014 ± 0.004 g DM g DM,1 day,1). Although the growth rate of the short patches did not exceed the value of the tall patches, the high value of relative growth rate appeared to indicate a higher photosynthetic capacity of the short patches. Moreover, live biomass did not decrease during the experimental period even in the short patch areas showing that, in the particular conditions of our study, overgrazing did not occur at the range of the stocking density examined. [source] Production Characteristics, Water Quality, and Costs of Producing Channel Catfish Ictalurus punctatus at Different Stocking Densities in Single-batch ProductionJOURNAL OF THE WORLD AQUACULTURE SOCIETY, Issue 1 2006Brent E. Southworth Channel catfish Ictalurus punctatus farming is the largest component of aquaculture in the USA. Culture technologies have evolved over time, and little recent work has been conducted on the effects of stocking density on production characteristics and water quality. Twelve 0.1-ha ponds were stocked with 13- to 15-cm fingerlings (16 g) at either 8600, 17,300, 26,000, or 34,600 fish/ha in single-batch culture with three replicates per treatment. Fish were fed daily to apparent satiation with a 32% floating commercial catfish feed. Nitrite-N, nitrate-N, total ammonia nitrogen (TAN), total nitrogen, total phosphorus, chemical oxygen demand (COD), Secchi disk visibility, chlorophyll a, chloride, total alkalinity, total hardness, pH, temperature, and dissolved oxygen (DO) were monitored. Ponds were harvested after a 201-d culture period (March 26, 2003 to October 13, 2003). Net yield increased significantly (P < 0.05) as stocking density increased, reaching an average of 9026 kg/ha at the highest density. Growth and marketable yield (>0.57 kg) decreased with increasing stocking density. Survival was not significantly different among densities. Mean and maximum daily feeding rates increased with density, but feed conversion ratios did not differ significantly among treatments (overall average of 1.42), despite the fact that at the higher stocking densities, the feeding rates sometimes exceeded 112 kg/ha per d (100 lb/ac per d). Morning DO concentrations fell below 3 mg/L only once in a 34,600 fish/ha pond. Concentrations of chlorophyll a, COD, nitrite-N, and TAN increased nominally with increasing feed quantities but did not reach levels considered problematic even at the highest stocking densities. Breakeven prices were lowest for the highest stocking density even after accounting for the additional time and growth required for submarketable fish to reach market size. While total costs were higher for the higher density treatments, the relatively higher yields more than compensated for higher costs. [source] Effects of stocking density and water exchange regimes on growth and survival of juvenile spotted babylon, Babylona areolata (Link), cultured in experimental earthen pondsAQUACULTURE RESEARCH, Issue 3 2009Sirusa Kritsanapuntu Abstract The growth and survival of juvenile spotted babylon, Babylonia areolata, were determined at five stocking densities (100, 200, 300, 400 and 500 snails m,2) and three water exchange regimes (7-, 15- and 21-day intervals) in experimental earthen ponds over a 6-month experimental period. The results showed that the growth of spotted babylons was not significantly different among any density treatments (P<0.05). At the end of the experiment, the average growth rates in body weights were 0.59, 0.59, 0.58, 0.42 and 0.41 g month,1 respectively. Growth was significantly different among the different water-exchange treatments (P<0.05). The higher body-weight gains were observed in snails held at water exchanges of 7- and 15-day intervals, when compared with those held at water exchange of 30-day intervals. At the end of the experiment, average body-weight gains were 4.22, 3.67 and 2.68 g for snails held in water-exchange treatments of 7-, 15- and 30-day intervals respectively. This study recommended that stocking densities ,300 snails m,2 and water exchange of 7,15-day intervals are suitable for cultured B. areolata juveniles in earthen pond. [source] Swimming activity and energetic expenditure of captive rainbow trout Oncorhynchus mykiss (Walbaum) estimated by electromyogram telemetryAQUACULTURE RESEARCH, Issue 6 2000S J Cooke Rainbow trout Oncorhynchus mykiss (Walbaum) are usually cultured at high densities to maximize production, but little is known about the physiological and behavioural consequences of high-density fish culture. The purpose of this study was to develop quantitative correlates of activity for fish held under conditions of increasing density. Fifteen hatchery-reared rainbow trout (mean fork length = 432.3 ± 9.2 mm) were implanted with activity (electromyogram; EMGi) transmitters and randomly assigned to each of three replicate tanks. Original tank densities (15 kg m,3) were then increased to 30 and finally to 60 kg m,3 at weekly intervals by adding additional fish. Remote telemetry signals indicated that activity increased with increasing stocking density. Fish were relatively inactive during the middle of the day, with diel activity patterns not differing among treatments. Fish were more active during periods of darkness, with activity increasing with increasing stocking density. Relationships between swimming speed, EMGi activity and oxygen consumption were developed using a respirometer and used to estimate oxygen consumption of the fish in the density treatments. Average oxygen consumption estimates increased with increasing density treatments as follows: low density = 75.6 mg kg,1 h,1; medium density = 90.0 mg kg,1 h,1; and high density = 102.6 mg kg,1 h,1. Telemetry permits quantification of the effects of increasing density on fish activity. Physiological telemetry devices may provide a useful tool for remotely monitoring animal welfare correlates under controlled conditions for fish exposed to different husbandry conditions and may prove a valuable tool for the aquaculture industry. [source] |