Home About us Contact | |||
Dense Granules (dense + granule)
Terms modified by Dense Granules Selected AbstractsDevelopment and fine structure of the yolk nucleus of previtellogenic oocytes in the medaka Oryzias latipesDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 6 2000Hirokuni Kobayashi The development and fine structure of yolk nuclei in the cytoplasm of previtellogenic oocytes were examined by electron microscopy during several stages of oogenesis in the medaka, Oryzias latipes. Shortly after oogenesis starts, oocytes 20,30 ,m in diameter have much electron-dense (basophilic) cytoplasm, within which a continuous or discontinuous, irregular ring-shaped lower electron-dense area of flocculent appearance (LF) begins to emerge around the nucleus. The yolk nucleus is first recognized within an LF area as a few fragments of dense granular thread measuring 20,25 nm in width. The threads consist of two rows of very dense granules resembling ribosomes or ribonucleoprotein (RNP)-like particles in size and electron density. These thread-like fragments gradually increase in number and length until they assemble into a compact, spherical mass of complicated networks. Analysis of serial sections suggests that the yolk nucleus is a complicated mass of numerous, small deformed vacuoles composed of a single lamella with double layers of ribosomes or RNP-like granules, rather than a mass of granular threads. When oocytes develop to greater than 100 ,m in diameter, the yolk nucleus begins to fragment before dispersing throughout the surrounding cytoplasm, concomitantly with the disappearance of LF areas. At this stage of oogenesis, a restricted region of the granulosa cell layer adjacent to the yolk nucleus becomes somewhat columnar in morphology, fixing the vegetal pole region of the oocyte. [source] Differentiation of snake epidermis, with emphasis on the shedding layerJOURNAL OF MORPHOLOGY, Issue 2 2005Lorenzo Alibardi Abstract Little is known about specific proteins involved in keratinization of the epidermis of snakes. The presence of histidine-rich molecules, sulfur, keratins, loricrin, transglutaminase, and isopeptide-bonds have been studied by ultrastructural autoradiography, X-ray microanalysis, and immunohistochemistry in the epidermis of snakes. Shedding takes place along a shedding complex, which is composed of two layers, the clear and the oberhautchen layers. The remaining epidermis comprises different layers, some of which contain beta-keratins and others alpha-keratins. Weak loricrin, transglutaminase, and sometimes also iso-peptide-bond immunoreactivities are seen in some cells, lacunar cells, of the alpha-layer. Tritiated histidine is mainly incorporated in the shedding complex, especially in dense beta-keratin filaments in cells of the oberhautchen layer and to a small amount in cells of the clear layer. This suggests the presence of histidine-rich, matrix proteins among beta-keratin bundles. The latter contain sulfur and are weakly immunolabeled for beta-keratin at the beginning of differentiation of oberhautchen cells. After merging with beta cells, the dense beta-keratin filaments of oberhautchen cells become immunopositive for beta-keratin. The uptake of histidine decreases in beta cells, where little dense matrix material is present, while pale beta-keratin filaments increase. During maturation, little histidine labeling remains in electron-dense areas of the beta layer and in those of oberhautchen spinulae. Some roundish dense granules of oberhautchen cells rich in sulfur are negative to antibodies for alpha-keratin, beta-keratin, and loricrin. The granules eventually merge with beta-keratin, and probably contribute to the formation of the resistant matrix of oberhautchen cells. In conclusion, beta-keratin, histidine-rich, and sulfur-rich proteins contribute to form snake microornamentations. J. Morphol. © 2005 Wiley-Liss, Inc. [source] Ultrastructure of the embryonic snake skin and putative role of histidine in the differentiation of the shedding complexJOURNAL OF MORPHOLOGY, Issue 2 2002Lorenzo Alibardi Abstract The morphogenesis and ultrastructure of the epidermis of snake embryos were studied at progressive stages of development through hatching to determine the time and modality of differentiation of the shedding complex. Scales form as symmetric epidermal bumps that become slanted and eventually very overlapped. During the asymmetrization of the bumps, the basal cells of the forming outer surface of the scale become columnar, as in an epidermal placode, and accumulate glycogen. Small dermal condensations are sometimes seen and probably represent primordia of the axial dense dermis of the growing tip of scales. Deep, dense, and superficial loose dermal regions are formed when the epidermis is bilayered (periderm and basal epidermis) and undifferentiated. Glycogen and lipids decrease from basal cells to differentiating suprabasal cells. On the outer scale surface, beneath the peridermis, a layer containing dense granules and sparse 25,30-nm thick coarse filaments is formed. The underlying clear layer does not contain keratohyalin-like granules but has a rich cytoskeleton of intermediate filaments. Small denticles are formed and they interdigitate with the oberhautchen spinulae formed underneath. On the inner scale surface the clear layer contains dense granules, coarse filaments, and does not form denticles with the aspinulated oberhautchen. On the inner side surface the oberhautchen only forms occasional spinulae. The sloughing of the periderm and embryonic epidermis takes place in ovo 5,6 days before hatching. There follow beta-, mesos-, and alpha-layers, not yet mature before hatching. No resting period is present but a new generation is immediately produced so that at 6,10 h posthatching an inner generation and a new shedding complex are forming beneath the outer generation. The first shedding complex differentiates 10,11 days before hatching. In hatchlings 6,10 h old, tritiated histidine is taken up in the epidermis 4 h after injection and is found mainly in the shedding complex, especially in the apposed membranes of the clear layer and oberhautchen cells. This indicates that a histidine-rich protein is produced in preparation for shedding, as previously seen in lizard epidermis. The second shedding (first posthatching) takes place at 7,9 days posthatching. It is suggested that the shedding complex in lepidosaurian reptiles has evolved after the production of a histidine-rich protein and of a beta-keratin layer beneath the former alpha-layer. J. Morphol. 251:149,168, 2002. © 2002 Wiley-Liss, Inc. [source] Ovine ooplasm directs initial nucleolar assembly in embryos cloned from ovine, bovine, and porcine cellsMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 2 2004Hamish M. Hamilton Abstract Here we present ultrastructural and immunocytochemical evidence that ovine ooplasm is directing the initial assembly of the nucleolus independent of the species of the nuclear donor. Intergeneric porcine,ovine somatic cell nuclear transfer (SCNT) and intrageneric ovine,ovine SCNT embryos were constructed and the nucleolus ultrastructure and nucleolus associated rRNA synthesis examined in 1-, 2-, 4-, early 8-, late 8-, and 16-cell embryos using transmission electron microscopy (TEM) and light microscopical autoradiography. In addition, immunocytochemical localization by confocal microscopy of nucleolin, a key protein involved in processing rRNA transcripts, was performed on early 8-, late 8-, and 16-cell embryos for both groups of SCNT embryos. Intergeneric porcine,ovine SCNT embryos exhibited nucleolar precursor bodies (NPBs) of an ovine (ruminant) ultrastructure, but no active rRNA producing fibrillo-granular nucleoli at any of the stages. Unusually, cytoplasmic organelles were located inside the nucleus of two porcine,ovine SCNT embryos. The ovine,ovine SCNT embryos, on the other hand, revealed fibrillo-granular nucleoli in 16-cell embryos. In parallel, autoradiographic labeling over the nucleoplasm, and in particular, the nulcleoli was detected. Bovine,ovine SCNT embryos at the eight-cell stage were examined for nucleolar morphology and exhibited ruminant-type NPBs as well as structures that appeared as fibrillar material surrounded by a rim of electron dense granules, perhaps formerly of nucleolar origin. Nucleolin was localized throughout the nucleoplasm and with particular intensity around the presumptive nucleolar compartments for all developmental stages examined in porcine,ovine and ovine,ovine SCNT embryos. In conclusion, this study suggests that factors within the ovine ooplasm are playing a role in the initial assembly of the embryonic nucleolus in intrageneric SCNT embryos. Mol. Reprod. Dev. 69: 117,125, 2004. © 2004 Wiley-Liss, Inc. [source] The Role of Acidocalcisomes in Parasitic Protists,THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 3 2009SILVIA N. J. MORENO ABSTRACT. Acidocalcisomes are acidic organelles with a high concentration of phosphorus present as pyrophosphate (PPi) and polyphosphate (poly P) complexed with calcium and other cations. The acidocalcisome membrane contains a number of pumps (Ca2+ -ATPase, V-H+ -ATPase, H+ -PPase), exchangers (Na+/H+, Ca2+/H+), and channels (aquaporins), while its matrix contains enzymes related to PPi and poly P metabolism. Acidocalcisomes have been observed in pathogenic, as well as non-pathogenic prokaryotes and eukaryotes, e.g. Chlamydomonas reinhardtii, and Dictyostelium discoideum. Some of the potential functions of the acidocalcisome are the storage of cations and phosphorus, the participation of phosphorus in PPi and poly P metabolism, calcium homeostasis, maintenance of intracellular pH homeostasis, and osmoregulation. In addition, acidocalcisomes resemble lysosome-related organelles (LRO) from mammalian cells in many of their properties. For example, we found that platelet dense granules, which are LROs, are very similar to acidocalcisomes. They share a similar size, acidic properties, and both contain PPi, poly P, and calcium. Recent work that indicates that they also share the system for targeting of their membrane proteins through adaptor protein 3 reinforces this concept. The fact that acidocalcisomes interact with other organelles in parasitic protists, e.g. the contractile vacuole in Trypanosoma cruzi, and other vacuoles observed in Toxoplasma gondii, suggests that these cellular compartments may be associated with the endosomal/lysosomal pathway. [source] |