Dendritic Tree (dendritic + tree)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Dynamics of action potential backpropagation in basal dendrites of prefrontal cortical pyramidal neurons

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2008
Wen-Liang Zhou
Abstract Basal dendrites of neocortical pyramidal neurons are relatively short and directly attached to the cell body. This allows electrical signals arising in basal dendrites to strongly influence the neuronal output. Likewise, somatic action potentials (APs) should readily propagate back into the basilar dendritic tree to influence synaptic plasticity. Two recent studies, however, determined that sodium APs are severely attenuated in basal dendrites of cortical pyramidal cells, so that they completely fail in distal dendritic segments. Here we used the latest improvements in the voltage-sensitive dye imaging technique (Zhou et al., 2007) to study AP backpropagation in basal dendrites of layer 5 pyramidal neurons of the rat prefrontal cortex. With a signal-to-noise ratio of >,15 and minimal temporal averaging (only four sweeps) we were able to sample AP waveforms from the very last segments of individual dendritic branches (dendritic tips). We found that in short- (< 150 µm) and medium (150,200 µm in length)-range basal dendrites APs backpropagated with modest changes in AP half-width or AP rise-time. The lack of substantial changes in AP shape and dynamics of rise is inconsistent with the AP-failure model. The lack of substantial amplitude boosting of the third AP in the high-frequency burst also suggests that in short- and medium-range basal dendrites backpropagating APs were not severely attenuated. Our results show that the AP-failure concept does not apply in all basal dendrites of the rat prefrontal cortex. The majority of synaptic contacts in the basilar dendritic tree actually received significant AP-associated electrical and calcium transients. [source]


Characterization and synaptic connectivity of melanopsin-containing ganglion cells in the primate retina

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2007
Patricia R. Jusuf
Abstract Melanopsin is a photopigment expressed in retinal ganglion cells, which are intrinsically photosensitive and are also involved in retinal circuits arising from rod and cone photoreceptors. This circuitry, however, is poorly understood. Here, we studied the morphology, distribution and synaptic input to melanopsin-containing ganglion cells in a New World monkey, the common marmoset (Callithrix jacchus). The dendrites of melanopsin-containing cells in marmoset stratify either close to the inner nuclear layer (outer stratifying), or close to the ganglion cell layer (inner stratifying). The dendritic fields of outer-stratifying cells tile the retina, with little overlap. However, the dendritic fields of outer-stratifying cells largely overlap with the dendritic fields of inner-stratifying cells. Thus, inner-stratifying and outer-stratifying cells may form functionally independent populations. The synaptic input to melanopsin-containing cells was determined using synaptic markers (antibodies to C-terminal binding protein 2, CtBP2, for presumed bipolar synapses, and antibodies to gephyrin for presumed amacrine synapses). Both outer-stratifying and inner-stratifying cells show colocalized immunoreactive puncta across their entire dendritic tree for both markers. The density of CtBP2 puncta on inner dendrites was about 50% higher than that on outer dendrites. The density of gephyrin puncta was comparable for outer and inner dendrites but higher than the density of CtBP2 puncta. The inner-stratifying cells may receive their input from a type of diffuse bipolar cell (DB6). Our results are consistent with the idea that both outer and inner melanopsin cells receive bipolar and amacrine input across their dendritic tree. [source]


Activation of class I metabotropic glutamate receptors limits dendritic growth of Purkinje cells in organotypic slice cultures

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2006
Alexandra Sirzen-Zelenskaya
Abstract The development of the dendritic tree of a neuron is a complex process which is thought to be regulated strongly by signals from afferent fibers. We showed previously that the blockade of glutamatergic excitatory neurotransmission has little effect on Purkinje cell dendritic development. We have now studied the effects of glutamate receptor agonists on the development of Purkinje cell dendrites in mouse organotypic slice cultures. The activation of N -methyl- d -aspartate receptors had no major effect on Purkinje cell dendrites and the activation of (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid receptors was strongly excitotoxic so that no analysis of its effects on dendritic development was possible. The activation of metabotropic glutamate receptors led to a very strong inhibition of dendritic growth, resulting in Purkinje cells with very small stubby dendrites. This effect was specific for the activation of class I metabotropic glutamate receptors and could not be reduced by blocking synaptic transmission in the cultures, indicating that it was mediated by receptors present on Purkinje cells. Pharmacological experiments suggest that the signaling pathway involved does not require activation of phospholipase C or protein kinase C. The inhibition of dendritic growth by activation of class I metabotropic glutamate receptor could be a useful negative feedback mechanism for limiting the size of the dendritic tree of Purkinje cells after the establishment of a sufficient number of parallel fiber contacts. This developmental mechanism could protect Purkinje cells from excitotoxic death through excessive release of glutamate from an overload of parallel fiber contacts. [source]


Spontaneous electrical activity and dendritic spine size in mature cerebellar Purkinje cells

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2005
Robin J. Harvey
Abstract Previous experiments have shown that in the mature cerebellum both blocking of spontaneous electrical activity and destruction of the climbing fibres by a lesion of the inferior olive have a similar profound effect on the spine distribution on the proximal dendrites of the Purkinje cells. Many new spines develop that are largely innervated by parallel fibers. Here we show that blocking electrical activity leads to a significant decrease in size of the spines on the branchlets. We have also compared the size of the spines of the proximal dendritic domain that appear during activity block and after an inferior olive lesion. In this region also, the spines in the absence of activity are significantly smaller. In the proximal dendritic domain, the new spines that develop in the absence of activity are innervated by parallel fibers and are not significantly different in size from those of the branchlets, although they are shorter. Thus, the spontaneous activity of the cerebellar cortex is necessary not only to maintain the physiological spine distribution profile in the Purkinje cell dendritic tree, but also acts as a signal that prevents spines from shrinking. [source]


Convergence of excitatory and inhibitory inputs onto CCK-containing basket cells in the CA1 area of the rat hippocampus

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2004
Ferenc Mátyás
Abstract The number and distribution of excitatory and inhibitory inputs affect the integrative properties of neurons. These parameters have been studied recently for several hippocampal neuron populations. Besides parvalbumin- (PV) containing cells that include basket and axo-axonic cells, cholecystokinin (CCK)-containing interneurons also form a basket cell population with several properties distinct from PV cells. Here, at the light microscopic level, we reconstructed the entire dendritic tree of CCK-immunoreactive (IR) basket cells to describe their geometry, the total length and laminar distribution of their dendrites. This was followed by an electron microscopic analysis of serial ultrathin sections immunostained against ,-aminobutyric acid, to estimate the density of excitatory and inhibitory synapses on their somata, axon initial segments and different subclasses of dendrites. The dendritic tree of CCK-IR basket cells has an average length of 6300 µm and penetrates all layers. At the electron microscopic level, CCK basket cells receive dendritic inputs with a density of 80,230 per 100 µm. The ratio of inhibitory inputs is relatively high (35%) and increases towards the soma (83%). The total numbers of excitatory and inhibitory synapses converging onto CCK-IR cells are ,,8200. Comparison of the two, neurochemically distinct basket cells reveals that CCK-containing basket cells receive much less synaptic input than PV cells; however, the relative weight of inhibition is higher on CCK cells. Additional differences in their anatomical and physiological properties predict that CCK basket cells are under a more diverse, elaborate control than PV basket cells, and thus the function of the two populations must be different. [source]


In vivo blockade of neural activity alters dendritic development of neonatal CA1 pyramidal cells

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2002
Laurent Groc
Abstract During development, neural activity has been proposed to promote neuronal growth. During the first postnatal week, the hippocampus is characterized by an oscillating neural network activity and a rapid neuronal growth. In the present study we tested in vivo, by injecting tetanus toxin into the hippocampus of P1 rats, whether this neural activity indeed promotes growth of pyramidal cells. We have previously shown that tetanus toxin injection leads to a strong reduction in the frequency of spontaneous GABA and glutamatergic synaptic currents, and to a complete blockade of the early neural network activity during the first postnatal week. Morphology of neurobiotin-filled CA1 pyramidal cells was analyzed at the end of the first postnatal week (P6,10). In activity-reduced neurons, the total length of basal dendritic tree was three times less than control. The number, but not the length, of basal dendritic branches was affected. The growth impairment was restricted to the basal dendrites. The apical dendrite, the axons, or the soma grew normally during activity deprivation. Thus, the in vivo neural activity in the neonate hippocampus seems to promote neuronal growth by initiating novel branches. [source]


The role of early neural activity in the maturation of turtle retinal function

JOURNAL OF ANATOMY, Issue 4 2001
EVELYNE SERNAGOR
In the developing vertebrate retina, ganglion cells fire spontaneous bursts of action potentials long before the eye becomes exposed to sensory experience at birth. These early bursts are synchronised between neighbouring retinal ganglion cells (RGCs), yielding unique spatiotemporal patterns: ,waves' of activity sweep across large retinal areas every few minutes. Both at retinal and extraretinal levels, these embryonic retinal waves are believed to guide the wiring of the visual system using hebbian mechanisms of synaptic strengthening. In the first part of this review, we recapitulate the evidence for a role of these embryonic spontaneous bursts of activity in shaping developing complex receptive field properties of RGCs in the turtle embryonic retina. We also discuss the role of visual experience in establishing RGC visual functions, and how spontaneous activity and visual experience interact to bring developing receptive fields to maturation. We have hypothesised that the physiological changes associated with development reflect modifications in the dendritic arbours of RGCs, the anatomical substrate of their receptive fields. We demonstrate that there is a temporal correlation between the period of receptive field expansion and that of dendritic growth. Moreover, the immature spontaneous activity contributes to dendritic growth in developing RGCs. Intracellular staining of RGCs reveals, however, that immature receptive fields only rarely show direct correlation with the layout of the corresponding dendritic tree. To investigate the possibility that not only the presence of the spontaneous activity, but even the precise spatiotemporal patterns encoded in retinal waves might contribute to the refinement of retinal neural circuitry, first we must clarify the mechanisms mediating the generation and propagation of these waves across development. In the second part of this review, we present evidence that turtle retinal waves, visualised using calcium imaging, exhibit profound changes in their spatiotemporal patterns during development. From fast waves sweeping across large retinal areas and recruiting many cells on their trajectory at early stages, waves become slower and eventually stop propagating towards hatching, when they become stationary patches of neighbouring coactive RGCs. A developmental switch from excitatory to inhibitory GABAA responses appears to mediate the modification in spontaneous activity patterns while the retina develops. Future chronic studies using specific spatiotemporal alterations of the waves will shed a new light on how the wave dynamics help in sculpting retinal receptive fields. [source]


Tiling among stereotyped dendritic branches in an identified Drosophila motoneuron,,

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 12 2010
F. Vonhoff
Abstract Different types of neurons can be distinguished by the specific targeting locations and branching patterns of their dendrites, which form the blueprint for wiring the brain. Unraveling which specific signals control different aspects of dendritic architecture, such as branching and elongation, pruning and cessation of growth, territory formation, tiling, and self-avoidance requires a quantitative comparison in control and genetically manipulated neurons. The highly conserved shapes of individually identified Drosophila neurons make them well suited for the analysis of dendritic architecture principles. However, to date it remains unclear how tightly dendritic architecture principles of identified central neurons are regulated. This study uses quantitative reconstructions of dendritic architecture of an identified Drosophila flight motoneuron (MN5) with a complex dendritic tree, comprising more than 4,000 dendritic branches and 6 mm total length. MN5 contains a fixed number of 23 dendritic subtrees, which tile into distinct, nonoverlapping volumes of the diffuse motor neuropil. Across-animal comparison and quantitative analysis suggest that tiling of the different dendritic subtrees of the same neuron is caused by competitive and repulsive interactions among subtrees, perhaps allowing different dendritic compartments to be connected to different circuit elements. We also show that dendritic architecture is similar among different wildtype and GAL4 driver fly lines. Metric and topological dendritic architecture features are sufficiently constant to allow for studies of the underlying control mechanisms by genetic manipulations. Dendritic territory and certain topological measures, such as tree compactness, are most constant, suggesting that these reflect the intrinsic molecular identity of the neuron. J. Comp. Neurol. 518:2169,2185, 2010. © 2010 Wiley-Liss, Inc. [source]


Three-dimensional average-shape atlas of the honeybee brain and its applications

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 1 2005
Robert Brandt
Abstract The anatomical substrates of neural nets are usually composed from reconstructions of neurons that were stained in different preparations. Realistic models of the structural relationships between neurons require a common framework. Here we present 3-D reconstructions of single projection neurons (PN) connecting the antennal lobe (AL) with the mushroom body (MB) and lateral horn, groups of intrinsic mushroom body neurons (type 5 Kenyon cells), and a single mushroom body extrinsic neuron (PE1), aiming to compose components of the olfactory pathway in the honeybee. To do so, we constructed a digital standard atlas of the bee brain. The standard atlas was created as an average-shape atlas of 22 neuropils, calculated from 20 individual immunostained whole-mount bee brains. After correction for global size and positioning differences by repeatedly applying an intensity-based nonrigid registration algorithm, a sequence of average label images was created. The results were qualitatively evaluated by generating average gray-value images corresponding to the average label images and judging the level of detail within the labeled regions. We found that the first affine registration step in the sequence results in a blurred image because of considerable local shape differences. However, already the first nonrigid iteration in the sequence corrected for most of the shape differences among individuals, resulting in images rich in internal detail. A second iteration improved on that somewhat and was selected as the standard. Registering neurons from different preparations into the standard atlas reveals 1) that the m-ACT neuron occupies the entire glomerulus (cortex and core) and overlaps with a local interneuron in the cortical layer; 2) that, in the MB calyces and the lateral horn of the protocerebral lobe, the axon terminals of two identified m-ACT neurons arborize in separate but close areas of the neuropil; and 3) that MB-intrinsic clawed Kenyon cells (type 5), with somata outside the calycal cups, project to the peduncle and lobe output system of the MB and contact (proximate) the dendritic tree of the PE1 neuron at the base of the vertical lobe. Thus the standard atlas and the procedures applied for registration serve the function of creating realistic neuroanatomical models of parts of a neural net. The Honeybee Standard Brain is accessible at www.neurobiologie.fu-berlin.de/beebrain. J. Comp. Neurol. 492:1,19, 2005. © 2005 Wiley-Liss, Inc. [source]


Synaptic organization of complex ganglion cells in rabbit retina: Type and arrangement of inputs to directionally selective and local-edge-detector cells

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 4 2005
Edward V. Famiglietti
Abstract The type and topographic distribution of synaptic inputs to a directionally selective (DS) rabbit retinal ganglion cell (GC) were examined and were compared with those received by two other complex GC types. The percentage of cone bipolar cell (BC) input, presumably an index of sustained responses and simple receptive field properties, is much higher than expected for complex GCs in reference to previous reports in other species: approximately 20% for the type 1 bistratified ON,OFF DS GC and for a multistratified GC, and approximately 40% for the small-tufted local-edge-detector GC. Consistent with a previous study (Famiglietti [1991] J. Comp. Neurol. 309:40,70), no ultrastructural evidence is found for inhibitory synapses from starburst amacrine cells to the ON,OFF DS GC. The density of inputs to the ON,OFF DS GC is high and rather evenly distributed over the dendritic tree. Clustering of inputs brings excitatory and inhibitory inputs into proximity, but the strict on-path condition of more proximal inhibitory inputs, favoring shunting inhibition, is not satisfied. Prominent BC input and its regional variation suggest that BCs play key roles in DS neural circuitry, both pre- and postsynaptic to the ON,OFF DS GC, according to a bilayer model (Famiglietti [1993] Invest. Ophthalmol. Vis. Sci. 34:S985). Asymmetry of inhibitory amacrine cell input may signify a region on the preferred side of the receptive field, the inhibition-free zone (Barlow and Levick [1965] J. Physiol. (Lond.) 178:477,504), supporting a role for postsynaptic integration in the DS mechanism. Prominent BC input to the local-edge-detector, often without accompanying amacrine cell input, indicates presynaptic integration in forming its trigger feature. J. Comp. Neurol. 484:357,391, 2005. © 2005 Wiley-Liss, Inc. [source]


A model of thalamocortical relay cells

THE JOURNAL OF PHYSIOLOGY, Issue 3 2005
Paul A. Rhodes
It is well established that the main intrinsic electrophysiological properties of thalamocortical relay cells, production of a low threshold burst upon release from hyperpolarized potential and production of a train of single spikes following stimulation from depolarized potentials, can be readily modelled using a single compartment. There is, however, another less well explored intrinsic electrophysiological characteristic of relay cells for which models have not yet accounted: at somatic potentials near spike threshold, relay cells produce a fast ragged high threshold oscillation in somatic voltage. Optical [Ca2+] imaging and pharmacological tests indicate that this oscillation correlates with a high threshold Ca2+ current in the dendrites. Here we present the development of a new compartment model of the thalamic relay cell guided by the simultaneous constraints that it must produce the familiar regular spiking relay mode and low threshold rebound bursts which characterize these cells, as well as the less-studied fast oscillation occurring at near-threshold somatic potentials. We arrive at a model cell which is capable of the production of isolated high threshold Ca2+ spikes in distal branch segments, driven by a rapidly inactivating intermediate threshold Ca2+ channel. Further, the model produces the low threshold spike behaviour of the relay cell without requiring high T-current density in the distal dendritic segments. The results thus support a new picture of the dendritic tree of relay cells which may have implications for the manner in which thalamic relay cells integrate descending input from the cortex. [source]


Neuropathology of Rett syndrome

DEVELOPMENTAL DISABILITIES RESEARCH REVIEW, Issue 2 2002
Dawna Duncan Armstrong
Abstract Rett Syndrome is unlike any other pediatric neurologic disease, and its clinical-pathologic correlation can not be defined with standard histology techniques. Based on hypotheses suggested by careful clinical observations, the nervous system of the Rett child has been explored utilizing morphometry, golgi preparations, computerized tomography, magnetic resonance imaging, chemistry, immunocytochemistry, autoradiography, and molecular biologic techniques. From these many perspectives we conclude that Rett syndrome is not a typical degenerative disorder, storage disorder, nor the result of gross malformation, infectious or neoplastic processes. There remain regions of the brain that have not been studied in detail but the available data suggest that the neuropathology of Rett syndrome can be summarized as follows: the Rett brain is small for the age and the height of the patient; it does not become progressively smaller over three to four decades; it has small dendritic trees in pyramidal neurons of layers III and V in selected lobes (frontal, motor, and temporal); it has small neurons with an increased neuronal packing density; it has an immature expression of microtubular protein-2 and cyclooxygenase; it exhibits a changing pattern of neurotransmitter receptors with an apparent reduction in many neurotransmitters, possibly contributing to some symptomatology. A mutation in Mecp2 causes this unique disorder of brain development. Neuronal mosaicism for normal and mutated Mecp2 produces a consistent phenotype in the classic female patient and a small brain with some preserved islands of function, but with an inability to support hand use and speech. This paper summarizes our current observations about neuropathology of Rett syndrome. MRDD Research Reviews 2002;8:72,76. © 2002 Wiley-Liss, Inc. [source]


Secreted TARSH regulates olfactory mitral cell dendritic complexity

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2009
Ting-Wen Cheng
Abstract Olfactory sensory neurons synapse with mitral cells to form stereotyped connections in the olfactory bulb (OB). Mitral cell apical dendrites receive input from olfactory sensory neurons expressing the same odorant receptor. During development, this restricted dendritic targeting of mitral cells is achieved through eliminating elaborated dendritic trees to a single apical dendrite. Through a genome-wide microarray screen, we identified TARSH (Target of NESH SH3) as a transiently expressed molecule in mitral cells during the dendritic refinement period. TARSH expression is restricted to pyramidal neurons along the main olfactory pathway, including the anterior olfactory nucleus and piriform cortex. The dynamic TARSH expression is not altered when odor-evoked activity is blocked by naris closure or in AC3 knockout mice. We also demonstrate that TARSH is a secreted protein. In dissociated OB cultures, secreted TARSH promotes the reduction of mitral cell dendritic complexity and restricts dendritic branching and outgrowth of interneurons. Dendritic morphological changes were also observed in mitral cells overexpressing TARSH themselves. We propose that TARSH is part of the genetic program that regulates mitral cell dendritic refinement. [source]


Collateral Capillary Arterialization following Arteriolar Ligation in Murine Skeletal Muscle

MICROCIRCULATION, Issue 5 2010
FEILIM MAC GABHANN
Microcirculation (2010) 17, 333,347. doi: 10.1111/j.1549-8719.2010.00034.x Abstract Objective:, Chronic and acute ischemic diseases,peripheral artery disease, coronary artery disease, stroke,result in tissue damage unless blood flow is maintained or restored in a timely manner. Mice of different strains recover from arteriolar ligation (by increasing collateral blood flow) at different speeds. We quantify the spatio-temporal patterns of microvascular network remodeling following arteriolar ligation in different mouse strains to better understand inter-individual variability. Methods:, Whole-muscle spinotrapezius microvascular networks of mouse strains C57Bl/6, Balb/c and CD1 were imaged using confocal microscopy following ligation of feeding arterioles. Results:, Baseline arteriolar structures of C57Bl/6 and Balb/c mice feature heavily ramified arcades and unconnected dendritic trees, respectively. This network angioarchitecture identifies ischemia-protected and ischemia-vulnerable tissues; unlike C57Bl/6, downstream capillary perfusion in Balb/c spinotrapezius is lost following ligation. Perfusion recovery requires arterialization (expansion and investment of mural cells) of a subset of capillaries forming a new low-resistance collateral pathway between arteriolar trees. Outbred CD1 exhibit either Balb/c-like or C57Bl/6-like spinotrapezius angioarchitecture, predictive of response to arteriolar ligation. Conclusions:, This collateral capillary arterialization process may explain the reported longer time required for blood flow recovery in Balb/c hindlimb ischemia, as low-resistance blood flow pathways along capillary conduits must be formed ("arterialization") before reperfusion. [source]


Organization of tectopontine terminals within the pontine nuclei of the rat and their spatial relationship to terminals from the visual and somatosensory cortex

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 3 2005
Cornelius Schwarz
Abstract We investigated the spatial relationship of axonal and dendritic structures in the rat pontine nuclei (PN), which transfer visual signals from the superior colliculus (SC) and visual cortex (A17) to the cerebellum. Double anterograde tracing (DiI and DiAsp) from different sites in the SC showed that the tectal retinotopy of visual signals is largely lost in the PN. Whereas axon terminals from lateral sites in the SC were confined to a single terminal field close to the cerebral peduncle, medial sites in the SC projected to an additional dorsolateral one. On the other hand, axon terminals originating from the two structures occupy close but, nevertheless, totally nonoverlapping terminal fields within the PN. Furthermore, a quantitative analysis of the dendritic trees of intracellularly filled identified pontine projection neurons showed that the dendritic fields were confined to either the SC or the A17 terminal fields and never extended into both. We also investigated the projections carrying cortical somatosensory inputs to the PN as these signals are known to converge with tectal ones in the cerebellum. However, terminals originating in the whisker representation of the primary somatosensory cortex and in the SC were located in segregated pontine compartments as well. Our results, therefore, point to a possible pontocerebellar mapping rule: Functionally related signals, commonly destined for common cerebellar target zones but residing in different afferent locations, may be kept segregated on the level of the PN and converge only later at specific sites in the granular layer of cerebellar cortex. J. Comp. Neurol. 484:283,298, 2005. © 2005 Wiley-Liss, Inc. [source]