Dendritic Fields (dendritic + field)

Distribution by Scientific Domains


Selected Abstracts


Morphology and mosaics of melanopsin-expressing retinal ganglion cell types in mice

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 13 2010
David M. Berson
Abstract Melanopsin is the photopigment of intrinsically photosensitive retinal ganglion cells (ipRGCs). Melanopsin immunoreactivity reveals two dendritic plexuses within the inner plexiform layer (IPL) and morphologically heterogeneous retinal ganglion cells. Using enhanced immunohistochemistry, we provide a fuller description of murine cell types expressing melanopsin, their contribution to the plexuses of melanopsin dendrites, and mosaics formed by each type. M1 cells, corresponding to the originally described ganglion-cell photoreceptors, occupy the ganglion cell or inner nuclear layers. Their large, sparsely branched arbors (mean diameter 275 ,m) monostratify at the outer limit of the OFF sublayer. M2 cells also have large, monostratified dendritic arbors (mean diameter 310 ,m), but ramify in the inner third of the IPL, within the ON sublayer. There are ,900 M1 cells and 800 M2 cells per retina; each type comprises roughly 1,2% of all ganglion cells. The cell bodies of M1 cells are slightly smaller than those of M2 cells (mean diameters: 13 ,m for M1, 15 ,m for M2). Dendritic field overlap is extensive within each type (coverage factors ,3.8 for M1 and 2.5 for M2 cells). Rare bistratified cells deploy terminal dendrites within both melanopsin-immunoreactive plexuses. Because these are too sparsely distributed to permit complete retinal tiling, they lack a key feature of true ganglion cell types and may be anomalous hybrids of the M1 and M2 types. Finally, we observed weak melanopsin immunoreactivity in other ganglion cells, mostly with large somata, that may constitute one or more additional types of melanopsin-expressing cells. J. Comp. Neurol. 518:2405,2422, 2010. © 2010 Wiley-Liss, Inc. [source]


Morphology and mosaics of melanopsin-expressing retinal ganglion cell types in mice,

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 13 2010
David M. Berson
Abstract Melanopsin is the photopigment of intrinsically photosensitive retinal ganglion cells (ipRGCs). Melanopsin immunoreactivity reveals two dendritic plexuses within the inner plexiform layer (IPL) and morphologically heterogeneous retinal ganglion cells. Using enhanced immunohistochemistry, we provide a fuller description of murine cell types expressing melanopsin, their contribution to the plexuses of melanopsin dendrites, and mosaics formed by each type. M1 cells, corresponding to the originally described ganglion-cell photoreceptors, occupy the ganglion cell or inner nuclear layers. Their large, sparsely branched arbors (mean diameter 275 ,m) monostratify at the outer limit of the OFF sublayer. M2 cells also have large, monostratified dendritic arbors (mean diameter 310 ,m), but ramify in the inner third of the IPL, within the ON sublayer. There are ,900 M1 cells and 800 M2 cells per retina; each type comprises roughly 1,2% of all ganglion cells. The cell bodies of M1 cells are slightly smaller than those of M2 cells (mean diameters: 13 ,m for M1, 15 ,m for M2). Dendritic field overlap is extensive within each type (coverage factors ,3.8 for M1 and 4.6 for M2 cells). Rare bistratified cells deploy terminal dendrites within both melanopsin-immunoreactive plexuses. Because these are too sparsely distributed to permit complete retinal tiling, they lack a key feature of true ganglion cell types and may be anomalous hybrids of the M1 and M2 types. Finally, we observed weak melanopsin immunoreactivity in other ganglion cells, mostly with large somata, that may constitute one or more additional types of melanopsin-expressing cells. J. Comp. Neurol. 518:2405,2422, 2010. © 2010 Wiley-Liss, Inc. [source]


Distribution and Cytoarchitecture of Sympathetic Neurons Innervating the Pineal Gland in Chick: A CTB-HRP Study

ANATOMIA, HISTOLOGIA, EMBRYOLOGIA, Issue 1 2009
L. Jia
Summary The neurons in bilateral superior cervical ganglia (SCG) innervating the chick pineal gland were labelled by using the technique of retrograde axonal labelling with cholera toxin B subunit linked to horseradish peroxidase (CTB-HRP). To our results, perikarya of these sympathetic neurons distributed from rostral to caudal in the SCG, and mainly localized in the opposite side of the paravertebral trunk. The fibres of these neurons were collected by the cephalic carotid nerve. According to the sizes of somal area and dendritic field, these sympathetic neurons projecting to the pineal gland were classified into four major groups: group I cells (52.4%) with a small somal area (303.5 ,m2 on average) and narrow dendritic field (3767.8 ,m2 on average), group II cells (39.0%) with a middle-sized somal area (473.3 ,m2) and middle-sized dendritic field (7522.2 ,m2), group III cells (6.4%) with a middle-sized somal area (473.4 ,m2) and wide dendritic field (13 104.4 ,m2), and group IV cells (2.2%) with a large somal area (940.7 ,m2) and wide dendritic field (14 553.2 ,m2). Of these pineal projecting neurons, most took on a lesser dendritic field. The neurons with small or middle-sized dendritic field from group I and II were about 91.4% of the total neurons labelled with CTB-HRP, and the neurons with wide dendritic field from group III and IV were less with 8.6%. [source]


Normal dendrite growth in Drosophila motor neurons requires the AP-1 transcription factor

DEVELOPMENTAL NEUROBIOLOGY, Issue 10 2008
Cortnie L. Hartwig
Abstract During learning and memory formation, information flow through networks is regulated significantly through structural alterations in neurons. Dendrites, sites of signal integration, are key targets of activity-mediated modifications. Although local mechanisms of dendritic growth ensure synapse-specific changes, global mechanisms linking neural activity to nuclear gene expression may have profound influences on neural function. Fos, being an immediate-early gene, is ideally suited to be an initial transducer of neural activity, but a precise role for the AP-1 transcription factor in dendrite growth remains to be elucidated. Here we measure changes in the dendritic fields of identified Drosophila motor neurons in vivo and in primary culture to investigate the role of the immediate-early transcription factor AP-1 in regulating endogenous and activity-induced dendrite growth. Our data indicate that (a) increased neural excitability or depolarization stimulates dendrite growth, (b) AP-1 (a Fos, Jun hetero-dimer) is required for normal motor neuron dendritic growth during development and in response to activity induction, and (c) neuronal Fos protein levels are rapidly but transiently induced in motor neurons following neural activity. Taken together, these results show that AP-1 mediated transcription is important for dendrite growth, and that neural activity influences global dendritic growth through a gene-expression dependent mechanism gated by AP-1. © 2008 Wiley Periodicals, Inc. Develop Neurobiol, 2008 [source]


Characterization and synaptic connectivity of melanopsin-containing ganglion cells in the primate retina

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2007
Patricia R. Jusuf
Abstract Melanopsin is a photopigment expressed in retinal ganglion cells, which are intrinsically photosensitive and are also involved in retinal circuits arising from rod and cone photoreceptors. This circuitry, however, is poorly understood. Here, we studied the morphology, distribution and synaptic input to melanopsin-containing ganglion cells in a New World monkey, the common marmoset (Callithrix jacchus). The dendrites of melanopsin-containing cells in marmoset stratify either close to the inner nuclear layer (outer stratifying), or close to the ganglion cell layer (inner stratifying). The dendritic fields of outer-stratifying cells tile the retina, with little overlap. However, the dendritic fields of outer-stratifying cells largely overlap with the dendritic fields of inner-stratifying cells. Thus, inner-stratifying and outer-stratifying cells may form functionally independent populations. The synaptic input to melanopsin-containing cells was determined using synaptic markers (antibodies to C-terminal binding protein 2, CtBP2, for presumed bipolar synapses, and antibodies to gephyrin for presumed amacrine synapses). Both outer-stratifying and inner-stratifying cells show colocalized immunoreactive puncta across their entire dendritic tree for both markers. The density of CtBP2 puncta on inner dendrites was about 50% higher than that on outer dendrites. The density of gephyrin puncta was comparable for outer and inner dendrites but higher than the density of CtBP2 puncta. The inner-stratifying cells may receive their input from a type of diffuse bipolar cell (DB6). Our results are consistent with the idea that both outer and inner melanopsin cells receive bipolar and amacrine input across their dendritic tree. [source]


Early neural activity and dendritic growth in turtle retinal ganglion cells

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 3 2006
Vandana Mehta
Abstract Early neural activity, both prenatal spontaneous bursts and early visual experience, is believed to be important for dendritic proliferation and for the maturation of neural circuitry in the developing retina. In this study, we have investigated the possible role of early neural activity in shaping developing turtle retinal ganglion cell (RGC) dendritic arbors. RGCs were back-labelled from the optic nerve with horseradish peroxidase (HRP). Changes in dendritic growth patterns were examined across development and following chronic blockade or modification of spontaneous activity and/or visual experience. Dendrites reach peak proliferation at embryonic stage 25 (S25, one week before hatching), followed by pruning in large field RGCs around the time of hatching. When spontaneous activity is chronically blocked in vivo from early embryonic stages (S22) with curare, a cholinergic nicotinic antagonist, RGC dendritic growth is inhibited. On the other hand, enhancement of spontaneous activity by dark-rearing (Sernagor & Grzywacz (1996)Curr. Biol., 6, 1503,1508) promotes dendritic proliferation in large-field RGCs, an effect that is counteracted by exposure to curare from hatching. We also recorded spontaneous activity from individual RGCs labelled with lucifer yellow (LY). We found a tendency of RGCs with large dendritic fields to be spontaneously more active than small-field cells. From all these observations, we conclude that immature spontaneous activity promotes dendritic growth in developing RGCs. [source]


Statistical morphological analysis of hippocampal principal neurons indicates cell-specific repulsion of dendrites from their own cell

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 2 2003
Alexei V. Samsonovich
Abstract Traditionally, the sources of guidance cues for dendritic outgrowth are mainly associated with external bodies (A) rather than with the same neuron from which dendrites originate (B). To quantify the relationship between factors A and B as determinants of the adult dendritic shape, the morphology of 83 intracellularly characterized, stained, completely reconstructed, and digitized principal neurons of the rat hippocampus was statistically analyzed using Bayesian optimization. It was found that the dominant directional preference (tropism) manifested in dendritic turns is to grow away from the soma rather than toward the incoming fibers or in any other fixed direction; therefore, B is predominant. Results are robust and consistent for all examined morphological classes (dentate gyrus granule cells, basal and apical trees of CA3 and CA1 pyramidal cells). In addition, computer remodeling of neurons based on the measured parameters produced virtual structures consistent with real morphologies, as confirmed by measurement of several global emergent parameters. Thus, the simple description of dendritic shape based on dendrites' tendency to grow straight, away from their own soma, and with additional random deflections, proves remarkably accurate and complete. Although based on adult neurons, these results suggest that dendritic guidance during development may be associated primarily with the host cell. This possibility challenges the traditional concept of dendritic guidance: in that hippocampal cells are densely packed and have highly overlapping dendritic fields, the somatodendritic repulsion must be cell specific. Plausible mechanisms involving extracellular effects of spikes are discussed, together with feasible experimental tests and predicted results. © 2002 Wiley-Liss, Inc. [source]


Organization of tectopontine terminals within the pontine nuclei of the rat and their spatial relationship to terminals from the visual and somatosensory cortex

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 3 2005
Cornelius Schwarz
Abstract We investigated the spatial relationship of axonal and dendritic structures in the rat pontine nuclei (PN), which transfer visual signals from the superior colliculus (SC) and visual cortex (A17) to the cerebellum. Double anterograde tracing (DiI and DiAsp) from different sites in the SC showed that the tectal retinotopy of visual signals is largely lost in the PN. Whereas axon terminals from lateral sites in the SC were confined to a single terminal field close to the cerebral peduncle, medial sites in the SC projected to an additional dorsolateral one. On the other hand, axon terminals originating from the two structures occupy close but, nevertheless, totally nonoverlapping terminal fields within the PN. Furthermore, a quantitative analysis of the dendritic trees of intracellularly filled identified pontine projection neurons showed that the dendritic fields were confined to either the SC or the A17 terminal fields and never extended into both. We also investigated the projections carrying cortical somatosensory inputs to the PN as these signals are known to converge with tectal ones in the cerebellum. However, terminals originating in the whisker representation of the primary somatosensory cortex and in the SC were located in segregated pontine compartments as well. Our results, therefore, point to a possible pontocerebellar mapping rule: Functionally related signals, commonly destined for common cerebellar target zones but residing in different afferent locations, may be kept segregated on the level of the PN and converge only later at specific sites in the granular layer of cerebellar cortex. J. Comp. Neurol. 484:283,298, 2005. © 2005 Wiley-Liss, Inc. [source]