Dendritic Cell Biology (dendritic + cell_biology)

Distribution by Scientific Domains


Selected Abstracts


Dendritic cell biology during malaria

CELLULAR MICROBIOLOGY, Issue 2 2007
Michelle Wykes
Summary Malaria is an infectious disease that causes serious morbidity and mortality worldwide. The disease is associated with a variety of clinical syndromes ranging from asymptomatic to lethal infections involving anaemia, organ failure, pulmonary and cerebral disease. The molecular and cellular factors responsible for the differences in disease severity are poorly understood but parasite-specific immune responses are thought to play a critical role in pathogenesis. Dendritic cells have an essential role in linking innate and adaptive immune responses and here we review their role in the context of malaria. [source]


Antigen presentation and dendritic cell biology in malaria

PARASITE IMMUNOLOGY, Issue 1-2 2006
M. M. STEVENSON
SUMMARY Dendritic cells (DCs) are important both in amplifying the innate immune response and in initiating adaptive immunity and shaping the type of T helper (Th) response. Although the role of DCs in immune responses to many intracellular pathogens has been delineated and research is underway to identify the mechanisms involved, relatively little is known concerning the role of DCs in immunity to malaria. In this review, we provide an overview and summary of previous and current studies aimed to investigate the role of DCs as antigen presenting cells (APCs). In addition, the role of DCs in inducing innate and adaptive immunity to blood-stage malaria is discussed and, where information is available, the mechanisms involved are presented. Data from studies in humans infected with Plasmodium falciparum, the major human parasite responsible for the high morbidity and mortality associated with malaria throughout many regions of the developing world, as well as data from experimental mouse models are presented. Overall, the data from these studies are conflicting. The possible reasons for these differences, including the use of different parasite species and parasite strains in the mouse studies, are discussed. Nevertheless, together the data have important implications for development of an effective malaria vaccine since the selection of appropriate Plasmodium antigens and/or adjuvants, targeting innate immune responses involving DCs, may provide optimal protection against malaria. It is hoped that this review promotes more investigation among malariologists and immunologists alike on DCs and malaria. [source]


Understanding dendritic cell biology and its role in immunological disorders through proteomic profiling

PROTEOMICS - CLINICAL APPLICATIONS, Issue 2 2010
Gabriela Bomfim Ferreira
Abstract Dendritic cells (DC) have always been present on the bright spot of immune research. They have been extensively studied for the last 35 years, and much is known about their different phenotypes, stimulatory capacity, and role in the immune system. During the last 15 years, great attention has been given to studies on global gene and protein expression profiles during the differentiation and maturation processes of these cells. It is well understood that studying the proteome, together with information on the role of protein post-translational modifications (PTM), will reveal the real dynamics of a living cell. The rapid increase of proteomic studies during the last decade describing the differentiation and maturation process in DCs, as well as modifications brought by the use of different compounds that either increase or decrease their immunogenicity, reflects the importance of understanding the molecular processes behind the functional properties of these cells. In the present review, we will give an overview of proteomic studies focusing on DCs. Thereby we will concentrate on the importance of these studies in understanding DC behavior from a molecular point of view and how these findings have aided in understanding the differences in functional properties of these cells. [source]


Some interfaces of dendritic cell biology

APMIS, Issue 7-8 2003
RALPH M. STEINMAN
The field of dendritic cell (DC) biology is robust, with several new approaches to analyze their role in vivo and many newly recognized functions in the control of immunity and tolerance. There also is no shortage of mysteries and challenges. To introduce this volume, I would like to summarize four interfaces of DC research with other lines of investigation and highlight some current issues. One interface is with hematopoiesis. DCs constitute a distinct lineage of white blood cell development with some unique features, such as their origin from both lymphoid and myeloid progenitors, the existence of several distinct subsets, and an important final stage of differentiation termed "maturation," which occurs in response to inflammation and infection, and is pivotal for determining the subsequent immune response. A second interface is with lymphocyte biology. DCs are now known to influence many different classes of lymphocytes (B, NK, NKT) and many types of T cell responses (Th1/Th2, regulatory T cells, peripheral T cell deletion), not just the initial priming or induction of T cell-mediated immunity, which was the first function to be uncovered. DCs are sentinels, controlling many of the afferent or inductive limbs of immune function, alerting the immune system and controlling its early decisions. A third interface is with cell biology. This is a critical discipline to understand at the subcellular and molecular levels the distinct capacities of DCs to handle antigens, to move about the body in a directed way, to bind and activate lymphocytes, and to exert many quality controls on the type of responses, for both tolerance and immunity. A fourth interface is with medicine. Here DCs are providing new approaches to disease pathogenesis and therapy. This interface is perhaps the most demanding, because it requires research with humans. Human research currently is being slowed by the need to deal with many challenges in the design of such studies, and the need to excite, attract and support the young scientists who are essential to move human investigation forward. Nonetheless, DCs are providing new opportunities to study patients and the many clinical conditions that involve the immune system. [source]