Home About us Contact | |||
Dendritic Branching (dendritic + branching)
Selected AbstractsGlutamate AMPA/kainate receptors, not GABAA receptors, mediate estradiol-induced sex differences in the hypothalamusDEVELOPMENTAL NEUROBIOLOGY, Issue 3 2007Brigitte J. Todd Abstract Sex differences in brain morphology underlie physiological and behavioral differences between males and females. During the critical perinatal period for sexual differentiation in the rat, gonadal steroids act in a regionally specific manner to alter neuronal morphology. Using Golgi-Cox impregnation, we examined several parameters of neuronal morphology in postnatal day 2 (PN2) rats. We found that in the ventromedial nucleus of the hypothalamus (VMN) and in areas just dorsal and just lateral to the VMN that there was a sex difference in total dendritic spine number (males greater) that was abolished by treating female neonates with exogenous testosterone. Dendritic branching was similarly sexually differentiated and hormonally modulated in the VMN and dorsal to the VMN. We then used spinophilin, a protein that positively correlates with the amount of dendritic spines, to investigate the mechanisms underlying these sex differences. Estradiol, which mediates most aspects of masculinization and is the aromatized product of testosterone, increased spinophilin levels in female PN2 rats to that of males. Muscimol, an agonist at GABAA receptors, did not affect spinophilin protein levels in either male or female neonates. Kainic acid, an agonist at glutamatergic AMPA/kainate receptors, mimicked the effect of estradiol in females. Antagonizing AMPA/kainate receptors with NBQX prevented the estradiol-induced increase in spinophilin in females but did not affect spinophilin level in males. © 2007 Wiley Periodicals, Inc. Develop Neurobiol, 2007 [source] Environmental complexity and central nervous system development and functionDEVELOPMENTAL DISABILITIES RESEARCH REVIEW, Issue 2 2004Mark H. Lewis Abstract Environmental restriction or deprivation early in development can induce social, cognitive, affective, and motor abnormalities similar to those associated with autism. Conversely, rearing animals in larger, more complex environments results in enhanced brain structure and function, including increased brain weight, dendritic branching, neurogenesis, gene expression, and improved learning and memory. Moreover, in animal models of CNS insult (e.g., gene deletion), a more complex environment has attenuated or prevented the sequelae of the insult. Of relevance is the prevention of seizures and attenuation of their neuropathological sequelae as a consequence of exposure to a more complex environment. Relatively little attention, however, has been given to the issue of sensitive periods associated with such effects, the relative importance of social versus inanimate stimulation, or the unique contribution of exercise. Our studies have examined the effects of environmental complexity on the development of the restricted, repetitive behavior commonly observed in individuals with autism. In this model, a more complex environment substantially attenuates the development of the spontaneous and persistent stereotypies observed in deer mice reared in standard laboratory cages. Our findings support a sensitive period for such effects and suggest that early enrichment may have persistent neuroprotective effects after the animal is returned to a standard cage environment. Attenuation or prevention of repetitive behavior by environmental complexity was associated with increased neuronal metabolic activity, increased dendritic spine density, and elevated neurotrophin (BDNF) levels in brain regions that are part of cortical,basal ganglia circuitry. These effects were not observed in limbic areas such as the hippocampus. MRDD Research Reviews 2004;10:91,95. © 2004 Wiley-Liss, Inc. [source] Secreted TARSH regulates olfactory mitral cell dendritic complexityEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2009Ting-Wen Cheng Abstract Olfactory sensory neurons synapse with mitral cells to form stereotyped connections in the olfactory bulb (OB). Mitral cell apical dendrites receive input from olfactory sensory neurons expressing the same odorant receptor. During development, this restricted dendritic targeting of mitral cells is achieved through eliminating elaborated dendritic trees to a single apical dendrite. Through a genome-wide microarray screen, we identified TARSH (Target of NESH SH3) as a transiently expressed molecule in mitral cells during the dendritic refinement period. TARSH expression is restricted to pyramidal neurons along the main olfactory pathway, including the anterior olfactory nucleus and piriform cortex. The dynamic TARSH expression is not altered when odor-evoked activity is blocked by naris closure or in AC3 knockout mice. We also demonstrate that TARSH is a secreted protein. In dissociated OB cultures, secreted TARSH promotes the reduction of mitral cell dendritic complexity and restricts dendritic branching and outgrowth of interneurons. Dendritic morphological changes were also observed in mitral cells overexpressing TARSH themselves. We propose that TARSH is part of the genetic program that regulates mitral cell dendritic refinement. [source] Doublecortin as a marker of adult neuroplasticity in the canary song control nucleus HVCEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2008Jacques Balthazart Abstract It is established that in songbirds the size of several brain song control nuclei varies seasonally, based on changes in cell size, dendritic branching and, in nucleus HVC, the incorporation of newborn neurons. In the developing and adult mammalian brain, the protein doublecortin (DCX) is expressed in postmitotic neurons and, as a part of the microtubule machinery, required for neuronal migration. We recently showed that in adult canaries, DCX-immunoreactive (ir) cells are present throughout the telencephalon, but the link between DCX and the active neurogenesis observed in songbirds remained uncertain. We demonstrate here that DCX labels recently born cells in the canary telencephalon and that, in parallel with changes in HVC volume, the number of DCX-ir cells is increased specifically in the HVC of testosterone-treated males compared with castrates, and in castrated testosterone-treated males paired with a female as compared with males paired with another male. The numbers of elongated DCX-ir cells (presumptive migrating neurons) and round multipolar DCX-ir cells (differentiating neurons) were also affected by the sex of the subjects and their photoperiodic condition (photosensitive vs photostimulated vs photorefractory). Thus, in canaries the endocrine state, as well as the social or photoperiodic condition independently of variation in steroid hormone action, affects the number of cells expressing a protein involved in neuronal migration specifically in brain areas that incorporate new neurons in the telencephalon. The DCX gene may be one of the targets by which testosterone and social stimuli induce seasonal changes in the volume of song nuclei. [source] A comparison of different models of stroke on behaviour and brain morphologyEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2003C.L.R. Gonzalez Abstract We compared the effects of three models of permanent ischemia, as well as cortical aspiration, on behaviour and brain morphology. Rats received a stroke either by devascularization or by two different procedures of medial cerebral artery occlusion (MCAO; small vs. large). Animals were trained in a reaching task, forepaw asymmetry, forepaw inhibition, sunflower seed task and tongue extension. Behaviour was assessed 1 week after the lesion and at 2-week intervals for a total of 9 weeks. One week after the surgery all animals were severely impaired on all tasks and although they improved over time they only reached preoperative base lines on tongue extension. Animals with small MCAOs performed better in reaching and sunflower tasks; no other behavioural differences were detected among the groups. Pyramidal cells in forelimb and cingulate areas as well as spiny neurons of the striatum were examined for dendritic branching and spine density using a Golgi,Cox procedure. Each lesion type had a different impact on cell morphology. Overall, different changes (atrophy or hypertrophy) were observed with each kind of lesion and these changes were specific for the region (forelimb, cingulate, striatum) and the condition (intact vs. damaged hemisphere). These results suggest that: (i) different lesions to the motor cortex produce subtle differences in behaviour, and (ii) the method used to induce the lesion produces striking differences in cortical and subcortical plasticity. [source] Bone morphogenetic protein-7 enhances dendritic growth and receptivity to innervation in cultured hippocampal neuronsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2000G. S. Withers Abstract Members of the bone morphogenetic protein (BMP) family of growth factors are present in the central nervous system during development and throughout life. They are known to play an important regulatory role in cell differentiation, but their function in postmitotic telencephalic neurons has not been investigated. To address this question, we examined cultured hippocampal neurons following treatment with bone morphogenetic protein-7 (BMP-7, also referred to as osteogenic protein-1). When added at the time of plating, BMP-7 markedly stimulated the rate of dendritic development. Within 1 day, the dendritic length of BMP-7-treated neurons was more than twice that of controls. By three days the dendritic arbors of BMP-7-treated neurons had attained a level of branching similar to that of 2-week-old neurons cultured under standard conditions. Several findings indicate that BMP-7 selectively enhances dendritic development. While dendritic length was significantly increased in BMP-7-treated neurons, the length of the axon was not. In addition, the mRNA encoding the dendritic protein MAP2 was significantly increased by BMP-7 treatment, but the mRNA for tubulin was not. Finally, BMP-7 did not enhance cell survival. Because dendritic maturation is a rate-limiting step in synapse formation in hippocampal cultures, we examined whether BMP-7 accelerated the rate at which neurons became receptive to innervation. Using two separate experimental paradigms, we found that the rate of synapse formation (assessed by counting synapsin I-positive presynaptic vesicle clusters) was increased significantly in neurons that had been exposed previously to BMP-7. Because BMP-7 and related BMPs are expressed in the hippocampus in situ, these factors may play a role in regulating dendritic branching and synapse formation in both development and plasticity. [source] Effect of Environmental Enrichment on Stress Related Systems in RatsJOURNAL OF NEUROENDOCRINOLOGY, Issue 5 2004F. Moncek Abstract The aim of this study was to test whether environmental enrichment alters the status and responsiveness of pituitary-adrenocortical and sympathetic-adrenomedullary hormones in rats. Previous studies have shown that rats kept in an enriched environment differ from those kept in standard cages in dendritic branching, synaptogenesis, memory function, emotionality and behaviour. In male Wistar rats kept in an enriched environment for 40 days, we studied basal concentrations of hormones, endocrine responses to 5-HT1A challenge and responsiveness and adaptation to repeated handling. Environmental enrichment consisted of large plexiglass cages with 10 rats per cage, which contained variety of objects exchanged three times a week. Rats kept in this enriched environment had higher resting plasma concentrations of corticosterone, larger adrenals and increased corticosterone release to buspirone challenge compared to controls. Lower adrenocorticotropic hormone, corticosterone and adrenaline responses to handling were noticed in rats kept in an enriched environment. Exposure to repeated handling led to a more rapid extinction of corticosterone responses in rats kept in an enriched environment. Thus, environmental enrichment leads to pronounced changes in neuroendocrine regulation, including larger adrenals and increased adrenocortical function, which are so far considered to be indication of chronic stress. [source] Hyperglycemia not hypoglycemia alters neuronal dendrites and impairs spatial memoryPEDIATRIC DIABETES, Issue 6 2008John I Malone Background/Objective:, We previously reported that chronic hyperglycemia, but not hypoglycemia, was associated with the reduction of neuronal size in the rat brain. We hypothesized that hyperglycemia-induced changes in neuronal structure would have negative consequences, such as impaired learning and memory. We therefore assessed the effects of hyperglycemia and hypoglycemia on neuronal dendritic structure and cognitive functioning in young rats. Design/Methods:, Experimental manipulations were conducted on male Wistar rats for 8 wk, beginning at 4 wk of age. At the completion of the treatments, all rats were trained in the radial-arm water maze, a spatial (hippocampus-dependent) learning and memory task. Three groups of rats were tested: an untreated control group, a streptozotocin-induced diabetic (STZ-D) group, and an intermittent hypoglycemic group. Following behavioral training, the brains of all animals were examined with histologic and biochemical measurements. Results:, Peripheral hyperglycemia was associated with significant increases in brain sorbitol (7.5 ± 1.6 vs. 5.84 ± 1.0 ,M/mg) and inositol (9.6 ± 1.4 vs. 7.1 ± 1.1 ,M/mg) and reduced taurine (0.65 ± 0.1 vs. 1.3 ± 0.1 mg/mg). Histologic evaluation revealed neurons with reduced dendritic branching and spine density in STZ-D rats but not in control or hypoglycemic animals. In addition, the STZ-D group exhibited impaired performance on the water maze memory test. Conclusions:, Hyperglycemia, but not hypoglycemia, was associated with adverse effects on the brain polyol pathway activity, neuronal structural changes, and impaired long-term spatial memory. This finding suggests that the hyperglycemic component of diabetes mellitus has a greater adverse effect on brain functioning than does intermittent hypoglycemia. [source] Cognitive deficits in Tsc1+/,mice in the absence of cerebral lesions and seizuresANNALS OF NEUROLOGY, Issue 6 2007Susanna M. I. Goorden MSc Objective Tuberous sclerosis complex (TSC) is characterized by brain lesions, epilepsy, increased incidence of mental retardation and autism. The causal link between lesion load and epilepsy on cognitive disabilities has been debated, and these factors explain only part of the intelligence quotient variability. A Tsc2 rat model of the disease provided evidence that the TSC genes are directly involved in neuronal function. However, these lesion- and epilepsy-free animals did not show learning deficits, leaving open the possibility that the presence of brain lesions or epilepsy is a prerequisite for the cognitive deficits to fully develop. Here, we reinvestigated the relation among cerebral lesions, epilepsy, and cognitive function using Tsc1+/,mice. Methods We used immunocytochemistry and high-resolution magnetic resonance imaging to study the presence of neuronal pathology in Tsc1+/,mice. We used the Morris water maze, fear conditioning, social interaction, and nest building test to study the presence of cognitive and social deficits. Results We observed no spontaneous seizures or cerebral lesions in the brains of Tsc1+/,mice. In addition, giant dysmorphic cells were absent, and spine number and dendritic branching appeared to be normal. Nevertheless, Tsc1+/,mice showed impaired learning in the hippocampus-sensitive versions of the learning tasks and impaired social behavior. Interpretation Tsc1+/,mice show social and cognitive deficits in the absence of apparent cerebral pathology and spontaneous seizures. These findings support a model in which haploinsufficiency for the TSC genes leads to aberrations in neuronal functioning resulting in impaired learning and social behavior. Ann Neurol 2007 [source] Systematic significance of fruit morphology and anatomy in tribes Persicarieae and Polygoneae (Polygonaceae)BOTANICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 1-2 2000LOUIS P. RONSE DECRAENE FLS Fruits of Polygonaceae have a basically similar construction of indchiscent nuts or achencs. Sections of fruits, coupled with surface patterns were studied with SEM and LM in all genera of the tribes Persicarieae and Polygoneae (Polygonoidcae-Polvgonaceae). The outer layer of the pericarp is usually thickened and its anatomy can be used consistently to delimit genera more than any other character of the fruit. Cells are most often puzzle piece-shaped in surface view, but the shape of the cells may become polygonal with straight anticlinal walls towards the endocarp. The primary sculpture of the cells is highly yariable and has value at the specific level, rarely at the generic level. No strict correlation exists between the external surface patterns and the anatomy. Two main cell types can be recognized in cross- and longitudinal section, correlated with the straight or undulating outline of the anticlinal walls. No distinction can be made between sections Persicaria, Tovara, Echinocaulon, and Cephalophtlon of the genus Persicaria: all share narrow rectangular cells with undulating anticlinal walls. Aconogonon and Bistorta can be delimited by the square to rectangular cells with a narrow dichotomously branching lumen and straight anticlinal walls; both genera are best grouped as a single genus with two sections. A similar arrangement is found occasionally in species of Polygonum s.s. Polygonella. Atraphaxis. Faltopia and Calligonum. Fruit anatomy of Pteropyrum is distinctive. The genus Polygonum s.s. shows a wide range of integrating patterns, ranging from straight to undulating anticlinal walls and cannot be separated from Polygonella. Fagopyrum is aberrant in having a parenchymatic exocarp and a thickened mesocarp: other evidence supports its isolated position. Different fruit anatomical patterns have arisen several times in evolution and have a limited value at tribal level but are useful at generic level. It is suggested that an arrangement with straight anticlinal walls and a broad lumen, eventually with dendritic branching towards the periphery, is ancestral. [source] |