Home About us Contact | |||
Demographic Performance (demographic + performance)
Selected AbstractsThe stratification theory for plant coexistence promoted by one-sided competitionJOURNAL OF ECOLOGY, Issue 3 2009Takashi Kohyama Summary 1It is an essential feature of plants that leaves at higher levels have better access to light than those at lower levels. Thus, larger plants generally enjoy greater success in competing for light than smaller ones. We analyse the effect of such size-asymmetry, or one-sided competition, on the successful coexistence of plant species, using an analytically tractable model for stratified populations, in which a plant in the same layer exhibits the same crowding effect as any other, irrespective of species. 2A two-layer population that is reproductive in upper layer and juvenile in lower layer has a uniquely stable (plant-size-weighted) equilibrium density, as long as its fecundity is sufficient to compensate for its mortality rate. We also calculate a unique threshold lower-layer density of this layered population when there is no upper-layer plant. This threshold lower-layer density is larger than the weighted equilibrium density with upper layer, except for the case of perfect two-sided competition. 3A two-layer species can stably coexist with a one-layer, understorey species as a result of one-sided, but not two-sided competition. The coexistence condition is that the equilibrium density of the one-layer species lies between the threshold lower-layer density and the equilibrium density of the two-layer species. For an understorey species to coexist successfully with a two-layer species, any advantage in demographic performance, most prominently in a sufficiently high fecundity per plant must offset the disadvantage of living in dark conditions. 4Results from a model of multi-layer populations suggest that several species differing in terms of maximum layer and fecundity can coexist under conditions of one-sided competition. We demonstrate an example of the stable coexistence of eight species. The inter-specific trade-offs predicted by the model correspond to patterns observed in a rain forest. 5Synthesis. We propose a stratification theory that explains the generation and maintenance of the successful coexistence of plant species. Under the condition of one-sided competition, a canopy population that takes advantage of escaping from understorey competition shows an ability to invade an understorey with a density higher than its own equilibrium density, and which offers opportunities for an understorey population with high fecundity and/or shade tolerance to coexist. The predicted coexistence of species that share maximum canopy height is most pronounced for trees of tropical rain forests. [source] Effects of the past and the present on species distribution: land-use history and demography of wintergreenJOURNAL OF ECOLOGY, Issue 2 2000Kathleen Donohue Summary 1,Past land use can have long-term effects on plant species' distributional patterns if alterations in resources and environmental conditions have persistent effects on population demography (environmental change) and/or if plants are intrinsically limited in their colonization ability (historical factors). 2,We evaluated the role of environmental alteration vs. historical factors in controlling distributional patterns of Gaultheria procumbens, a woody, clonal understorey species with a pronounced restriction to areas that have never been ploughed, and near absence from adjoining areas that were ploughed in the 19th century. The demographic study was conducted in scrub oak and hardwood plant communities on an extensive sand plain, where it was possible to control for the effect of variation in environment prior to land use. 3,The observed demographic effects were contrary to the hypothesis that persistent environmental alteration depressed demographic performance and limited the distribution of G. procumbens. We observed no overall effect of land-use history on stem density, stem recruitment or flower production. In fact, some aspects of performance were enhanced in previously ploughed areas. Populations in previously ploughed areas exhibited less stem mortality in scrub oak transitions, an increase in germination, seedling longevity and proportion of potentially reproductive stems in both plant communities, a trend for slower observed rates of population decline in both plant communities, and a higher projected rate of population growth in the scrub oak transitions. Thus, particularly in scrub oak communities, the lower abundance of G. procumbens in formerly ploughed than in unploughed areas contrasted with its performance. 4,The limited occurrence of G. procumbens in formerly farmed areas was explained instead by its slow intrinsic growth rate, coupled with limited seedling establishment. Lateral population extension occurred exclusively through vegetative growth, allowing a maximum expansion of 43 cm year,1. 5,We conclude that inherent limitations in the colonizing ability of some plant species may present a major obstacle in the restoration or recovery of plant communities on intensively disturbed sites, even in the absence of persistent environmental effects that depress population growth. [source] Is life-history buffering or lability adaptive in stochastic environments?OIKOS, Issue 7 2009David N. Koons It is commonly thought that temporal fluctuations in demographic parameters should be selected against because of the deleterious impacts variation can have on fitness. A critical underpinning of this prediction is the assumption that changes in environmental conditions map linearly into changes in demographic parameters over time. We detail why this assumption may often break down and why selection should not always favor buffering of demographic parameters against environmental stochasticity. To the contrary, nonlinear relationships between the environment and demographic performance can produce asymmetric temporal variation in demographic parameters that actually enhances fitness. We extend this result to structured populations using simulation and show that ,demographic lability' rather than ,buffering' may be adaptive, particularly in organisms with low juvenile or adult survival. Finally, we review previous ecological work, and indicate cases where ,demographic lability' may be adaptive, then conclude by identifying research that is needed to develop a theory of life-history evolution that encompasses both demographic buffering and lability. [source] Environmental variation and experience-related differences in the demography of the long-lived black-browed albatrossJOURNAL OF ANIMAL ECOLOGY, Issue 1 2007MARIE NEVOUX Summary 1It has been largely demonstrated that demographic performances of animals increase with age or experience as a result of an improvement of foraging skills, an increasing reproductive effort or a selection process. However, little is known about the age or experience-related response of populations to environmental variations. Theoretical studies consider that age-related variations of the performances are greater under more restricting conditions, but this has rarely been tested. 2We tested this hypothesis on a long-lived species, black browed albatross Thalassarche melanophrys Temminck, using a long-term capture,mark,recapture data set. We investigated the responses of a population to climate, by studying the effects of climatic factors and breeding experience on survival and breeding success. 3First-time breeders appear to be poorer performers compared with experienced adults, with lower reproductive success and lower survival. In addition, interannual variations of demographic traits were partly explained by climatic indices, reflecting environmental variations. The survival probability of black-browed albatrosses varied with experience and climate, and differences being greater under harsh conditions. By contrast, the reproductive success of inexperienced individuals was affected by climatic fluctuations in the same way as the experienced ones. 4First breeding event acts as a strong selective process on the highly heterogeneous class of inexperienced individuals, suggesting the increase in survival and breeding success with experience may mainly reflect a reduction in the heterogeneity among individual qualities. [source] |