Defensive Role (defensive + role)

Distribution by Scientific Domains


Selected Abstracts


Host plant changes produced by the aphid Sipha flava: consequences for aphid feeding behaviour and growth

ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA, Issue 2 2002
W.L. Gonzáles
Abstract Induced plant responses may affect the behaviour and growth of the attacking herbivore insect. The aphid Sipha flava (Forbes) produces reddish spots on the infested leaf of its host plant Sorghum halepense (L.). In order to assess the consequences on the aphid of this presumptive induced plant response, we studied the feeding behaviour and growth of S. flava on previously infested and non-infested leaves of S. halepense. Considering that the reddish pigment could play a defensive role, its effect on aphid survival was determined in artificial diets. In addition, changes in the histology of the leaf and the chemical nature of the induced pigment were also studied. Aphids devoted a significantly shorter total time to non-penetration activities in infested than in non-infested leaves. Time before the first phloem ingestion tended to be shorter in infested leaves. The mean relative growth rate of S. flava nymphs was significantly higher on infested than on non-infested leaves. Survival of aphids on diet containing the reddish extract was not significantly different from that on the control diet. Infestation of S. halepense by S. flava produced a reddish coloration in the leaf, which was identified as an anthocyanin by UV-visible spectrometry. Light microscopy showed that only mesophyll cells of previously infested plants presented swelled, dispersed, and heterogeneously stained chloroplasts with a higher accumulation of starch granules, no grana arranged in stacks, and reduction in the amount of inner membranes (thylakoids), relatively to chloroplasts of non-infested leaves. Scanning electron micrographs of leaf surface revealed reduced presence of crystalline epicuticular waxes of epidermal cells in infested leaves as compared to non-infested ones. The main conclusion is that the attack of S. flava to S. halepense leaves induced plant susceptibility where aphid feeding behaviour and growth were both enhanced on previously infested leaves. [source]


Foraging by fearful frugivores: combined effect of fruit ripening and predation risk

FUNCTIONAL ECOLOGY, Issue 6 2006
J. M. FEDRIANI
Summary 1Plant defensive compounds and predation risk are main determinants of herbivore foraging, though empirical studies have seldom measured the combined effects of these two factors. By considering the interaction between the herb Helleborus foetidus and its main fruit and seed predator, the Wood Mouse Apodemus sylvaticus, we evaluated whether the defensive role against seed predators of compounds present in H. foetidus unripe fruits holds across a micro-landscape that differs in foraging costs (i.e. predation risk). 2First, we used standardized food patches that simulated fruiting H. foetidus plants to ascertain fruit preferences of captive mice. Then, by means of field experiments, we assessed the combined effects of fruit ripening and predation risk on foraging by free-ranging mice. 3Captive mice avoided plants with unripe fruit and avoided consuming unripe fruits within a particular plant. Free-ranging mice also avoided unripe fruits in safe microhabitats (rocky substrate), but not in risky microhabitats (bare ground) where few fruits were consumed. This unexpected result may be driven by predation risk experienced by mice foraging on H. foetidus fruits, and/or plant defensive compounds acting in a dose-dependent manner. 4Frugivorous mice responded to both chemical defences present in unripe H. foetidus fruits as well as to predation cost though such response was sequential. Plant defence compounds appeared to play a part in mouse foraging only after mice selected low predation risk microhabitats. 5Our study indicates that both digestive and ecological factors influence foraging decisions, which in turn affects pressures exerted by herbivores on plant populations. [source]


Lysosomal abnormalities during benzo(a)pyrene-induced experimental lung carcinogenesis , defensive role of capsaicin

FUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 1 2009
P. Anandakumar
Abstract The objective of the present study was to investigate whether lysosome is a target in benzo(a)pyrene-induced, oxidative stress-mediated lung cancer in Swiss albino mice and the plausible role of the phytochemical substance capsaicin in mitigating lysosomal damage. Oxidative stress was assessed based on the level of carbonyl content. The activities of lysosomal proteases like cathepsin-D, cathepsin-B, ,- d -glucosidase, ,- d -galactosidase, ,- d -glucuronidase, ,- d - N -acetylglucosaminidase and acid phosphatase were assessed to evaluate lysosomal function. Administration of benzo(a)pyrene (50 mg/kg body weight) to mice induced a increase in the activities of lysosomal enzymes and oxidative stress was evident by the increase in carbonyl content. Treatment with capsaicin (10 mg/kg body weight) decreased carbonyl content and restored the activities of lysosomal enzymes to near normalcy. Transmission electron microscopic study of lysosomes further showed the defensive action of capsaicin against the lysosomal damage caused in benzo(a)pyrene-induced lung cancer. From the present study, it can be concluded that lysosomal damage is an indispensable event in benzo(a)pyrene-induced lung cancer, and capsaicin was able to effectively prevent it, which proves the chemoprotective effect of capsaicin against benzo(a)pyrene-induced experimental lung carcinogenesis. [source]


Effect of varying monoterpene concentrations on the response of Ips pini (Coleoptera: Scolytidae) to its aggregation pheromone: implications for pest management and ecology of bark beetles

AGRICULTURAL AND FOREST ENTOMOLOGY, Issue 4 2003
Nadir Erbilgin
Abstract 1,Host plant terpenes can influence attraction of conifer bark beetles to their aggregation pheromones: both synergistic and inhibitory compounds have been reported. However, we know little about how varying concentrations of individual monoterpenes affect responses. 2,We tested a gradient of ratios of ,-pinene, the predominant monoterpene in host pines in the Great Lakes region of North America, to Ips pini's pheromone, racemic ipsdienol plus lanierone. 3,Ips pini demonstrated a parabolic response, in which low concentrations of ,-pinene had no effect on attraction to its pheromone, intermediate concentrations were synergistic and high concentrations were inhibitory. These results suggest optimal release rates for population monitoring and suppression programmes. 4,Inhibition of bark beetle attraction to pheromones may be an important component of conifer defences. At terpene to pheromone ratios emulating emissions from trees actively responding to a first attack, arrival of flying beetles was low. This may constitute an additional defensive role of terpenes, which are also toxic to bark beetles at high concentrations. 5,Reduced attraction to a low ratio of ,-pinene to pheromone, as occurs when colonization densities become high and the tree's resin is largely depleted, might reflect a mechanism for preventing excessive crowding. 6,Thanasimus dubius, the predominant predator of I. pini, was also attracted to ipsdienol plus lanierone, but its response differed from that of its prey. Attraction increased across all concentrations of ,-pinene. This indicates that separate lures are needed to sample both predators and bark beetles effectively. It also provides an opportunity for maximizing pest removal while reducing adverse effects on beneficial species. This disparity further illustrates the complexity confronting natural enemies that track chemical signals to locate herbivores. [source]


Protease inhibitors and reproduction of reniform nematode in pineapple

ANNALS OF APPLIED BIOLOGY, Issue 1 2009
C. Rabovich
Abstract Endogenous protease inhibitors (PIs) in the roots of Smooth Cayenne pineapple clones may affect the growth of the plant-parasitic nematode Rotylenchulus reniformis. In pineapple, reniform population densities remain atypically near preplant levels for 6,9 months after pineapple planting. A potted plant experiment was conducted to determine if the PI present in pineapple roots affected nematode reproduction and possibly account for the observed nematode field population dynamics. Pineapple PI activity increased for the first 6 months after planting and was higher in nematode-inoculated plants. Nematode reproduction, however, was not correlated to PI activity. In a second experiment, PI activity was concentrated in the portion of the roots nearest the pineapple butt where nematode population densities were highest. The behaviour of the PI in pineapple roots suggested a defensive role, such as systemic acquired resistance, against R. reniformis. [source]