Home About us Contact | |||
Decreased Virulence (decreased + virulence)
Selected AbstractsDecreased virulence of a strain of Pseudomonas aeruginosa O12 overexpressing a chromosomal type 1 ,-lactamase could be due to reduced expression of cell-to-cell signaling dependent virulence factorsFEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 3 2000Françoise Ramisse Abstract Pseudomonas aeruginosa produces a large variety of virulence factors and is characterized by its capacity to rapidly develop resistance when exposed to antibiotics. In order to evaluate a possible correlation between acquired resistance to antibiotics and virulence, we examined the virulence of four isogenic variants of P. aeruginosa O12 that differ in their resistance phenotypes to various ,-lactam antibiotics in a mouse model of acute pneumonia. Strains overproducing a chromosomal type 1 ,-lactamase were less virulent in both immunocompetent and immunosuppressed animals. Whereas the production of the exopolysaccharide alginate was similar between the four strains, extracellular virulence factors (elastase, rhamnolipid) that are controlled by the cell-to-cell signaling system circuit were detected in reduced amounts in the supernatant of the two isolates overproducing type 1 ,-lactamase. These results suggest that strains overexpressing the chromosomal type 1 ,-lactamase could be less virulent because of a reduction of cell-to-cell signaling dependent virulence factor production. [source] Interspecific hybridization in plant-associated fungi and oomycetes: a reviewMOLECULAR ECOLOGY, Issue 11 2003C. L. Schardl Abstract Fungi (kingdom Mycota) and oomycetes (kingdom Stramenopila, phylum Oomycota) are crucially important in the nutrient cycles of the world. Their interactions with plants sometimes benefit and sometimes act to the detriment of humans. Many fungi establish ecologically vital mutualisms, such as in mycorrhizal fungi that enhance nutrient acquisition, and endophytes that combat insects and other herbivores. Other fungi and many oomycetes are plant pathogens that devastate natural and agricultural populations of plant species. Studies of fungal and oomycete evolution were extraordinarily difficult until the advent of molecular phylogenetics. Over the past decade, researchers applying these new tools to fungi and oomycetes have made astounding new discoveries, among which is the potential for interspecific hybridization. Consequences of hybridization among pathogens include adaptation to new niches such as new host species, and increased or decreased virulence. Hybrid mutualists may also be better adapted to new hosts and can provide greater or more diverse benefits to host plants. [source] Dissecting the essentiality of the bifunctional trypanothione synthetase-amidase in Trypanosoma brucei using chemical and genetic methodsMOLECULAR MICROBIOLOGY, Issue 3 2009Susan Wyllie Summary The bifunctional trypanothione synthetase-amidase (TRYS) comprises two structurally distinct catalytic domains for synthesis and hydrolysis of trypanothione (N1,N8 - bis(glutathionyl)spermidine). This unique dithiol plays a pivotal role in thiol-redox homeostasis and in defence against chemical and oxidative stress in trypanosomatids. A tetracycline-dependent conditional double knockout of TRYS (cDKO) was generated in bloodstream Trypanosoma brucei. Culture of cDKO parasites without tetracycline induction resulted in loss of trypanothione and accumulation of glutathione, followed by growth inhibition and cell lysis after 6 days. In the absence of inducer, cDKO cells were unable to infect mice, confirming that this enzyme is essential for virulence in vivo as well as in vitro. To establish whether both enzymatic functions were essential, an amidase-dead mutant cDKO line was generated. In the presence of inducer, this line showed decreased growth in vitro and decreased virulence in vivo, indicating that the amidase function is not absolutely required for viability. The druggability of TRYS was assessed using a potent small molecule inhibitor developed in our laboratory. Growth inhibition correlated in rank order cDKO, single KO, wild-type and overexpressing lines and produced the predicted biochemical phenotype. The synthetase function of TRYS is thus unequivocally validated as a drug target by both chemical and genetic methods. [source] A mycobacterial virulence gene cluster extending RD1 is required for cytolysis, bacterial spreading and ESAT-6 secretionMOLECULAR MICROBIOLOGY, Issue 6 2004Lian-Yong Gao Summary Initiation and maintenance of infection by mycobacteria in susceptible hosts are not well understood. A screen of Mycobacterium marinum transposon mutant library led to isolation of eight mutants that failed to cause haemolysis, all of which had transposon insertions in genes homologous to a region between Rv3866 and Rv3881c in Mycobacterium tuberculosis, which encompasses RD1 (Rv3871,Rv3879c), a known virulence gene cluster. The M. marinum mutants showed decreased virulence in vivo and failed to secrete ESAT-6, like M. tuberculosis RD1 mutants. M. marinum mutants in genes homologous to Rv3866-Rv3868 also failed to accumulate intracellular ESAT-6, suggesting a possible role for those genes in synthesis or stability of the protein. These transposon mutants and an ESAT-6/CFP-10 deletion mutant all showed reduced cytolysis and cytotoxicity to macrophages and significantly decreased intracellular growth at late stages of the infection only when the cells were infected at low multiplicity of infection, suggesting a defect in spreading. Direct evidence for cell-to-cell spread by wild-type M. marinum was obtained by microscopic detection in macrophage and epithelial monolayers, but the mutants all were defective in this assay. Expression of M. tuberculosis homologues complemented the corresponding M. marinum mutants, emphasizing the functional similarities between M. tuberculosis and M. marinum genes in this region that we designate extRD1 (extended RD1). We suggest that diminished membranolytic activity and defective spreading is a mechanism for the attenuation of the extRD1 mutants. These results extend recent findings on the genomic boundaries and functions of M. tuberculosis RD1 and establish a molecular cellular basis for the role that extRD1 plays in mycobacterial virulence. Disruption of the M. marinum homologue of Rv3881c, not previously implicated in virulence, led to a much more attenuated phenotype in macrophages and in vivo, suggesting that this gene plays additional roles in M. marinum survival in the host. [source] |