Deafness

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Deafness

  • congenital deafness
  • progressive deafness
  • recessive deafness
  • sensorineural deafness


  • Selected Abstracts


    Pathophysiology of KCNQ Channels: Neonatal Epilepsy and Progressive Deafness

    EPILEPSIA, Issue 8 2000
    Thomas J. Jentsch
    No abstract is available for this article. [source]


    Juvenile Paget's Disease: The Second Reported, Oldest Patient Is Homozygous for the TNFRSF11B "Balkan" Mutation (966_969delTGACinsCTT), Which Elevates Circulating Immunoreactive Osteoprotegerin Levels,,§¶

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2007
    Michael P Whyte MD
    Abstract The oldest person (60 yr) with juvenile Paget's disease is homozygous for the TNFRSF11B mutation 966_969delTGACinsCTT. Elevated circulating levels of immunoreactive OPG and soluble RANKL accompany this genetic defect that truncates the OPG monomer, preventing formation of OPG homodimers. Introduction: Juvenile Paget's disease (JPD), a rare autosomal recessive disorder, features skeletal pain, fracture, and deformity from extremely rapid bone turnover. Deafness and sometimes retinopathy also occur. Most patients have diminished osteoprotegerin (OPG) inhibition of osteoclastogenesis caused by homozygous loss-of-function defects in TNFRSF11B, the gene that encodes OPG. Circulating immunoreactive OPG (iOPG) is undetectable with complete deletion of TNFRSF11B but normal with a 3-bp in-frame deletion. Materials and Methods: We summarize the clinical course of a 60-yr-old Greek man who is the second reported, oldest JPD patient, including his response to two decades of bisphosphonate therapy. Mutation analysis involved sequencing all exons and adjacent mRNA splice sites of TNFRSF11B. Over the past 4 yr, we used ELISAs to quantitate his serum iOPG and soluble RANKL (sRANKL) levels. Results: Our patient suffered progressive deafness and became legally blind, although elevated markers of bone turnover have been normal for 6 yr. He carries the same homozygous mutation in TNFRSF11B (966_969delTGACinsCTT) reported in a seemingly unrelated Greek boy and Croatian man who also have relatively mild JPD. This frame-shift deletes 79 carboxyterminal amino acids from the OPG monomer, including a cysteine residue necessary for homodimerization. Nevertheless, serum iOPG and sRANKL levels are persistently elevated. Conclusions: Homozygosity for the TNFRSF11B "Balkan" mutation (966_969delTGACinsCTT) causes JPD in the second reported, oldest patient. Elevated circulating iOPG and sRANKL levels complement evidence that this deletion/insertion omits a cysteine residue at the carboxyterminus needed for OPG homodimerization. [source]


    Prevalence of Unilateral and Bilateral Deafness in Border Collies and Association with Phenotype

    JOURNAL OF VETERINARY INTERNAL MEDICINE, Issue 6 2006
    Simon Platt
    Background:Congenital sensorineural deafness (CSD) occurs in Border Collies, but its prevalence and inheritance are unknown. This study estimated the prevalence of CSD in Border Collies and investigated its association with phenotypic attributes linked to the merle gene, including coat pigmentation and iris color. Hypothesis:Deafness in Border Collies is associated with pigmentation patterns linked to the merle gene. Animals:A total of 2597 Border Collies from the United Kingdom. Methods:A retrospective study of Border Collies tested, during 1994,2002, by using brainstem auditory evoked responses. Associations between deafness and phenotypic attributes were assessed by using generalized logistic regression. Results:The prevalence of CSD in puppies was estimated as 2.8%. The corresponding rates of unilateral and bilateral CSD were 2.3 and 0.5%, respectively. Adjustment for clustering of hearing status by litter reduced the overall prevalence estimate to 1.6%. There was no association between CSD and sex (P= .2). Deaf Border Collies had higher rates of merle coat pigmentation, blue iris pigment, and excess white on the head than normal hearing Border Collies (all P < .001). The odds of deafness were increased by a factor of 14 for Border Collies with deaf dams, relative to the odds for dogs with normal dams (P= .007), after adjustment for phenotypic attributes. Conclusions and Clinical Importance: Associations between CSD and pigmentation patterns linked to the merle gene were demonstrated for Border Collies. Evidence for an inherited component to CSD in Border Collies supports selective breeding from only tested and normal parents to reduce the prevalence of this disease. [source]


    In Reference to Temporal Bone Imaging in GJB2 Deafness

    THE LARYNGOSCOPE, Issue 6 2007
    Evan J. Propst MSc
    No abstract is available for this article. [source]


    A New De Novo Missense Mutation in Connexin 26 in a Sporadic Case of Nonsyndromic Deafness

    THE LARYNGOSCOPE, Issue 5 2007
    Paola Primignani PhD
    Abstract Objectives: Mutations in the GJB2 gene, encoding Connexin 26, can cause nonsyndromic recessive deafness or dominant hearing loss (HL) with or without keratoderma. The objective was to perform a molecular evaluation to establish the inherited pattern of deafness in the sporadic cases afferent to our center. Methods: The subject was a 2-year-old Italian girl with nonsyndromic early onset HL. We performed DNA sequencing of the GJB2 gene and deletion analysis of the GJB6 gene in all family members. Results: Direct sequencing of the gene showed a heterozygous C,G transition at nucleotide 172 resulting in a proline to alanine amino acid substitution at codon 58 (P58A). The analyses indicate that the P58A mutation appeared de novo in the proband with a possible dominant effect. Conclusions: This mutation occurs in the first extracellular domain (EC1), which seems to be very important for connexon-connexon interaction and for the control of voltage gating of the channel. The de novo occurrence of an EC1 mutation in a sporadic case of deafness is consistent with the assumption that P58A can cause dominant HL. [source]


    Hush Puppy: A New Mouse Mutant With Pinna, Ossicle, and Inner Ear Defects,

    THE LARYNGOSCOPE, Issue 1 2005
    FRCSEd, Henry Pau MD
    Abstract Objectives/Hypothesis: Deafness can be associated with abnormalities of the pinna, ossicles, and cochlea. The authors studied a newly generated mouse mutant with pinna defects and asked whether these defects are associated with peripheral auditory or facial skeletal abnormalities, or both. Furthermore, the authors investigated where the mutation responsible for these defects was located in the mouse genome. Methods: The hearing of hush puppy mutants was assessed by Preyer reflex and electrophysiological measurement. The morphological features of their middle and inner ears were investigated by microdissection, paint-filling of the labyrinth, and scanning electron microscopy. Skeletal staining of skulls was performed to assess the craniofacial dimensions. Genome scanning was performed using microsatellite markers to localize the mutation to a chromosomal region. Results: Some hush puppy mutants showed early onset of hearing impairment. They had small, bat-like pinnae and normal malleus but abnormal incus and stapes. Some mutants had asymmetrical defects and showed reduced penetrance of the ear abnormalities. Paint-filling of newborns' inner ears revealed no morphological abnormality, although half of the mice studied were expected to carry the mutation. Reduced numbers of outer hair cells were demonstrated in mutants' cochlea on scanning electron microscopy. Skeletal staining showed that the mutants have significantly shorter snouts and mandibles. Genome scan revealed that the mutation lies on chromosome 8 between markers D8Mit58 and D8Mit289. Conclusion: The study results indicate developmental problems of the first and second branchial arches and otocyst as a result of a single gene mutation. Similar defects are found in humans, and hush puppy provides a mouse model for investigation of such defects. [source]


    Fitness Among Individuals with Early Childhood Deafness: Studies in Alumni Families from Gallaudet University

    ANNALS OF HUMAN GENETICS, Issue 1 2010
    Susan H. Blanton
    Summary The genetic fitness of an individual is influenced by their phenotype, genotype and family and social structure of the population in which they live. It is likely that the fitness of deaf individuals was quite low in the Western European population during the Middle Ages. The establishment of residential schools for deaf individuals nearly 400 years ago resulted in relaxed genetic selection against deaf individuals which contributed to the improved fitness of deaf individuals in recent times. As part of a study of deaf probands from Gallaudet University, we collected pedigree data, including the mating type and the number and hearing status of the children of 686 deaf adults and 602 of their hearing siblings. Most of these individuals had an onset of severe to profound hearing loss by early childhood. Marital rates of deaf adults were similar to their hearing siblings (0.83 vs. 0.85). Among married individuals, the fertility of deaf individuals is lower than their hearing siblings (2.06 vs. 2.26, p = 0.005). The fitness of deaf individuals was reduced (p = 0.002). Analysis of fertility rates after stratification by mating type reveals that matings between two deaf individuals produced more children (2.11) than matings of a deaf and hearing individual (1.85), suggesting that fertility among deaf individuals is influenced by multiple factors. [source]


    Double Heterozygosity with Mutations Involving both the GJB2 and GJB6 Genes is a Possible, but very Rare, Cause of Congenital Deafness in the Czech Population

    ANNALS OF HUMAN GENETICS, Issue 1 2005
    P. Seeman
    Summary Mutations in the GJB2 gene are the most common cause of prelingual, autosomal recessive, sensorineural hearing loss worldwide. Nevertheless, 10% to 50% of patients with prelingual nonsyndromic deafness only carry one mutation in the GJB2 gene. Recently a large 342 kb deletion named ,(GJB6-D13S1830) involving the GJB6 gene was reported in Spanish and French deafness patients, either in a homozygous state or in combination with a monoallelic GJB2 mutation. No data have been reported about the frequency of this mutation in central Europe. Thirteen Czech patients with prelingual nonsyndromic sensorineural deafness carrying only one pathogenic mutation in the GJB2 gene were tested for the presence of the ,(GJB6-D13S1830) mutation. One patient with a GJB2 mutation (313del14) also carried the ,(GJB6-D13S1830). This is the first reported Czech case, and probably also the first central European case, of prelingual deafness due to mutations involving both the GJB2 and GJB6 genes. In addition, the ,(GJB6-D13S1830) was not detected in 600 control chromosomes from Czech individuals with normal hearing. We show that in the Czech Republic the ,(GJB6-D13S1830) is not the second most common causal factor in deafness patients heterozygous for a single GJB2 mutation, and that ,(GJB6-D13S1830) is very rare in central Europe compared to reports from Spain, France and Israel. [source]


    Steps in Theory-of-Mind Development for Children With Deafness or Autism

    CHILD DEVELOPMENT, Issue 2 2005
    Candida C. Peterson
    Prior research demonstrates that understanding theory of mind (ToM) is seriously and similarly delayed in late-signing deaf children and children with autism. Are these children simply delayed in timing relative to typical children, or do they demonstrate different patterns of development? The current research addressed this question by testing 145 children (ranging from 3 to 13 years) with deafness, autism, or typical development using a ToM scale. Results indicate that all groups followed the same sequence of steps, up to a point, but that children with autism showed an importantly different sequence of understandings (in the later steps of the progression) relative to all other groups. [source]


    Clinical features, diagnosis and management of maternally inherited diabetes and deafness (MIDD) associated with the 3243A>G mitochondrial point mutation

    DIABETIC MEDICINE, Issue 4 2008
    R. Murphy
    Abstract Maternally inherited diabetes and deafness (MIDD) affects up to 1% of patients with diabetes but is often unrecognized by physicians. It is important to make an accurate genetic diagnosis, as there are implications for clinical investigation, diagnosis, management and genetic counselling. This review summarizes the range of clinical phenotypes associated with MIDD; outlines the advances in genetic diagnosis and pathogenesis of MIDD; summarizes the published prevalence data and provides guidance on the clinical management of these patients and their families. [source]


    Prevalence and clinical characteristics of maternally inherited diabetes and deafness caused by the mt3243A > G mutation in young adult diabetic subjects in Sri Lanka

    DIABETIC MEDICINE, Issue 3 2008
    P. Katulanda
    Abstract Aims The maternally inherited mt3243A > G mutation is associated with a variable clinical phenotype including diabetes and deafness (MIDD). We aimed to determine the prevalence and clinical characteristics of MIDD in a large South Asian cohort of young adult-onset diabetic patients from Sri Lanka. Methods DNA was available from 994 subjects (age of diagnosis 16,40 years, age at recruitment , 45 years). Mutation screening was performed using a QRT-PCR method on an ABI 7900HT system using sequence-specific probes. Samples with heteroplasmy , 5.0% were considered positive. Results Nine (four males) mutation-positive subjects were identified (prevalence 0.9%). They were diagnosed at a younger age (25.9 ± 4.8 years vs. 31.9 ± 5.6 years, P = 0.002) and were lean (body mass index [BMI] 18.7 ± 2.7 kg/m2 vs. 24.7 ± 4.0 kg/m2, P < 0.001) compared to NMCs. One mutation-positive subject (11.1%) had metabolic syndrome, compared to 633 (64.3%) of NMCs. Insulin therapy within 6 months of diagnosis was used in four (44.0%) carriers compared to 6.9% of NMCs (P = 0.002). Combined screening criteria of any two of maternal history of diabetes, personal history of hearing impairment and family history of hearing impairment only identified five (55%) of the carriers, with a positive predictive value of 7.4%. Conclusions The prevalence of mt3243A > G mutation among young adult-onset diabetic subjects from Sri Lanka was 0.9%. Our study demonstrates that a maternal family history of diabetes and either a personal and/or family history of deafness only distinguish half of patients with MIDD from Sri Lankan subjects with young-onset diabetes. [source]


    Maternal transmission of diabetes

    DIABETIC MEDICINE, Issue 2 2002
    J. C. Alcolado
    Abstract Type 2 diabetes mellitus represents a heterogeneous group of conditions characterized by impaired glucose homeostasis. The disorder runs in families but the mechanism underlying this is unknown. Many, but not all, studies have suggested that mothers are excessively implicated in the transmission of the disorder. A number of possible genetic phenomena could explain this observation, including the exclusively maternal transmission of mitochondrial DNA (mtDNA). It is now apparent that mutations in mtDNA can indeed result in maternally inherited diabetes. Although several mutations have been implicated, the strongest evidence relates to a point substitution at nucleotide position 3243 (A to G) in the mitochondrial tRNAleu(UUR) gene. Mitochondrial diabetes is commonly associated with nerve deafness and often presents with progressive non-autoimmune ,-cell failure. Specific treatment with Coenzyme Q10 or L-carnitine may be beneficial. Several rodent models of mitochondrial diabetes have been developed, including one in which mtDNA is specifically depleted in the pancreatic islets. Apart from severe, pathogenic mtDNA mutations, common polymorphisms in mtDNA may contribute to variations of insulin secretory capacity in normal individuals. Mitochondrial diabetes accounts for less than 1% of all diabetes and other mechanisms must underlie the maternal transmission of Type 2 diabetes. Possibilities include the role of maternally controlled environments, imprinted genes and epigenetic phenomena. [source]


    Coexistence of Unverricht-Lundborg disease and congenital deafness: Molecular resolution of a complex comorbidity

    EPILEPSIA, Issue 6 2009
    Miljana Kecmanovi
    Summary Purpose:, We report on genetic analysis of a complex condition in a Serbian family of four siblings, wherein two had progressive myoclonic epilepsy (PME) and congenital deafness (CD), one had isolated congenital deafness (ICD), and one was healthy. Methods and Results:, Molecular diagnosis performed by Southern blotting confirmed Unverricht-Lundborg disease in the available sibling with PME/CD. In the sibling with ICD (heterozygote for expansion mutation in CSTB) we demonstrated recombination event between the D21S2040 marker and the CSTB gene and identified c.207delC (p.T70Xfs) mutation in the fourth exon of the transmembrane protease, serine-3 (TMPRSS3) gene (maps in close proximity to CSTB), responsible for nonsyndromic deafness in the sibling with PME/CD as well. Discussion:, To the best of our knowledge this is the first genetic confirmation of the coexistence of these two mutations. [source]


    MYH9 related disease: four novel mutations of the tail domain of myosin-9 correlating with a mild clinical phenotype

    EUROPEAN JOURNAL OF HAEMATOLOGY, Issue 4 2010
    Alessandro Pecci
    Abstract MYH9 -related disease (MYH9 -RD) is a rare autosomal dominant disorder caused by mutations in MYH9, the gene encoding the heavy chain of non-muscle myosin IIA. All patients present congenital macrothrombocytopenia and inclusion bodies in neutrophils. Some of them can also develop sensorineural deafness, presenile cataract, and/or progressive nephropathy leading to end-stage renal failure. We report four families, each with a novel mutation: two missense mutations, in exons 31 and 32, and two out of frame deletions in exon 40. They were associated with no bleeding diathesis, normal, or only slightly reduced platelet count and no extra-hematological manifestations, confirming that alterations of the tail domain cause a mild form of MYH9 -RD with no clinically relevant defects. [source]


    Detection of unique neutrophil non-muscle myosin heavy chain-A localization by immunofluorescence analysis in MYH9 disorder presented with macrothrombocytopenia without leukocyte inclusions and deafness

    EUROPEAN JOURNAL OF HAEMATOLOGY, Issue 1 2005
    Shinji Kunishima
    Abstract:,MYH9 disorders are autosomal-dominant macrothrombocytopenias with leukocyte inclusions caused by mutations in the MYH9 gene, which encodes the non-muscle myosin heavy chain-A (NMMHCA). We report a patient with an MYH9 disorder who presented with macrothrombocytopenia without leukocyte inclusions and severe bilateral sensory deafness. Conventional May,Grünwald,Giemsa staining failed to detect granulocyte cytoplasmic inclusions, whereas immunofluorescence analysis clearly demonstrated abnormal neutrophil NMMHCA localization. Genetic analyses revealed a novel heterozygous 18 base deletion in MYH9, leading to a six-amino acid in-frame deletion (N76_S81del) in NMMHCA. These results further support the usefulness of immunofluorescence analysis in differential diagnosis of MYH9 disorders. [source]


    Clinical and genetic features of human prion diseases in Catalonia: 1993,2002

    EUROPEAN JOURNAL OF NEUROLOGY, Issue 10 2004
    R. Sanchez-Valle
    We describe the clinical and genetic characteristics of the 85 definite or probable human prion diseases cases died between January 1993 and December 2002 in Catalonia (an autonomous community of Spain, 6 million population). Seventy-three (86%) cases were sporadic Creutzfeld-Jakob diseases (sCJD) (49 definite, 24 probable), with a median age at onset of 66 years. The clinical presentation was dementia in 29 cases, ataxia in 14 and visual symptoms in five. The median survival was 3 months. The 14-3-3 assay was positive in 93% cases, 62% presented periodic sharp wave complexes (PSWC) in EEG but only 18% the typical signs on MRI. Forty-eight sCJD were studied for codon 129 PRNP polymorphism: 69% were methionine/methionine (M/M), 14.5% valine/valine (V/V) and 16.5% M/V. Six out of seven V/V cases did not present PSWC and in two survival was longer than 20 months. Eleven cases (13%) were genetic: five familial fatal insomnia and six familial CJD (fCJD). Up to four (67%) fCJD lacked family history of disease, two presented seizures early at onset and one neurosensorial deafness. The only iatrogenic case was related to a dura mater graft. No case of variant CJD was registered. The study confirms in our population the consistent pattern reported worldwide on human prion diseases. Atypical features were seen more frequently in sporadic 129 V/V CJD and fCJD cases. [source]


    Clinical application of neurotrophic factors: the potential for primary auditory neuron protection

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2005
    Lisa N. Gillespie
    Abstract Sensorineural hearing loss, as a result of damage to or destruction of the sensory epithelia within the cochlea, is a common cause of deafness. The subsequent degeneration of the neural elements within the inner ear may impinge upon the efficacy of the cochlear implant. Experimental studies have demonstrated that neurotrophic factors can prevent this degeneration in animal models of deafness, and can even provide functional benefits. Neurotrophic factor therapy may therefore provide similar protective effects in humans, resulting in improved speech perception outcomes among cochlear implant patients. There are, however, numerous issues pertaining to delivery techniques and treatment regimes that need to be addressed prior to any clinical application. This review considers these issues in view of the potential therapeutic application of neurotrophic factors within the auditory system. [source]


    Disruption of transport activity in a D93H mutant thiamine transporter 1, from a Rogers Syndrome family

    FEBS JOURNAL, Issue 22 2003
    Dana Baron
    Rogers syndrome is an autosomal recessive disorder resulting in megaloblastic anemia, diabetes mellitus, and sensorineural deafness. The gene associated with this disease encodes for thiamine transporter 1 (THTR1), a member of the SLC19 solute carrier family including THTR2 and the reduced folate carrier (RFC). Using transient transfections into NIH3T3 cells of a D93H mutant THTR1derived from a Rogers syndrome family, we determined the expression, post-translational modification, plasma membrane targeting and thiamine transport activity. We also explored the impact on methotrexate (MTX) transport activity of a homologous missense D88H mutation in the human RFC, a close homologue of THTR1. Western blot analysis revealed that the D93H mutant THTR1 was normally expressed and underwent a complete N -glycosylation. However, while this mutant THTR1 was targeted to the plasma membrane, it was completely devoid of thiamine transport activity. Consistently, introduction into MTX transport null cells of a homologous D88H mutation in the hRFC did not result in restoration of MTX transport activity, thereby suggesting that D88 is an essential residue for MTX transport activity. These results suggest that the D93H mutation does not interfere with transporter expression, glycosylation and plasma membrane targeting. However, the substitution of this negatively charged amino acid (Asp93) by a positively charged residue (His) in an extremely conserved region (the border of transmembrane domain 2/intracellular loop 2) in the SLC19 family, presumably inflicts deleterious structural alterations that abolish thiamine binding and/or translocation. Hence, this functional characterization of the D93H mutation provides a molecular basis for Rogers syndrome. [source]


    Primary Ewing sarcoma of the petrous temporal bone: An exceptional cause of facial palsy and deafness in a nursling

    HEAD & NECK: JOURNAL FOR THE SCIENCES & SPECIALTIES OF THE HEAD AND NECK, Issue 10 2006
    Jens Pfeiffer MD
    Abstract Background. Primary Ewing sarcoma affecting the skull base in general and the petrous bone in particular is extremely rare with only 4 reports of Ewing sarcoma arising in the petrous temporal bone in the international medical literature. Methods. The authors report for the first time a case of a primary Ewing sarcoma of the petrous temporal bone in a 5-month-old nursling, which became apparent with a complete peripheral facial palsy and ipsilateral surdity. Results. The neoformation was treated by systemic chemotherapy and radiation of the tumor region. The diagnostic steps, therapy, and development of the child are described in detail; the literature concerning Ewing sarcoma originating from the skull in general and from the petrous temporal bone in particular is reviewed. Conclusions. The highlights of this case are an extremely uncommon location, an unusual age of presentation, as well as a unique set of symptoms. © 2006 Wiley Periodicals, Inc. Head Neck, 2006 [source]


    RFT1 deficiency in three novel CDG patients,

    HUMAN MUTATION, Issue 10 2009
    Wendy Vleugels
    Abstract The medical significance of N-glycosylation is underlined by a group of inherited human disorders called Congenital Disorders of Glycosylation (CDG). One key step in the biosynthesis of the Glc3Man9GlcNAc2 -PP-dolichol precursor, essential for N-glycosylation, is the translocation of Man5GlcNAc2 -PP-dolichol across the endoplasmic reticulum membrane. This step is facilitated by the RFT1 protein. Recently, the first RFT1-deficient CDG (RFT1-CDG) patient was identified and presented a severe N-glycosylation disorder. In the present study, we describe three novel CDG patients with an RFT1 deficiency. The first patient was homozygous for the earlier reported RFT1 missense mutation (c.199C>T; p.R67C), whereas the two other patients were homozygous for the missense mutation c.454A>G (p.K152E) and c.892G>A (p.E298,K), respectively. The pathogenic character of the novel mutations was illustrated by the accumulation of Man5GlcNAc2 -PP-dolichol and by reduced recombinant DNase 1 secretion. Both the glycosylation pattern and recombinant DNase 1 secretion could be normalized by expression of normal RFT1 cDNA in the patients' fibroblasts. The clinical phenotype of these patients comprised typical CDG symptoms in addition to sensorineural deafness, rarely reported in CDG patients. The identification of additional RFT1-deficient patients allowed to delineate the main clinical picture of RFT1-CDG and confirmed the crucial role of RFT1 in Man5GlcNAc2 -PP-dolichol translocation. Hum Mutat 30:1,7, 2009. © 2009 Wiley-Liss, Inc. [source]


    Mutation spectrum of MYO7A and evaluation of a novel nonsyndromic deafness DFNB2 allele with residual function,,

    HUMAN MUTATION, Issue 4 2008
    Saima Riazuddin
    Abstract Recessive mutations of MYO7A, encoding unconventional myosin VIIA, can cause either a deaf-blindness syndrome (type 1 Usher syndrome; USH1B) or nonsyndromic deafness (DFNB2). In our study, deafness segregating as a recessive trait in 24 consanguineous families showed linkage to markers for the DFNB2/USH1B locus on chromosome 11q13.5. A total of 23 of these families segregate USH1 due to 17 homozygous mutant MYO7A alleles, of which 14 are novel. One family segregated nonsyndromic hearing loss DFNB2 due to a novel three-nucleotide deletion in an exon of MYO7A (p.E1716del) encoding a region of the tail domain. We hypothesized that DFNB2 alleles of MYO7A have residual myosin VIIA. To address this question we investigated the effects of several mutant alleles by making green fluorescent protein (GFP) tagged cDNA expression constructs containing engineered mutations of mouse Myo7a at codons equivalent to pathogenic USH1B and DFNB2 alleles of human MYO7A. We show that in transfected mouse hair cells an USH1B mutant GFP-myosin VIIa does not localize properly to inner ear hair cell stereocilia. However, a GFP-myosin VIIa protein engineered to have an equivalent DFNB2 mutation to p.E1716del localizes correctly in transfected mouse hair cells. This finding is consistent with the hypothesis that p.E1716del causes a less severe phenotype (DFNB2) than the USH1B -associated alleles because the resulting protein retains some degree of normal function. Hum Mutat 29(4), 502,511, 2008. Published 2008 Wiley-Liss, Inc. [source]


    Position of nonmuscle myosin heavy chain IIA (NMMHC-IIA) mutations predicts the natural history of MYH9 -related disease,

    HUMAN MUTATION, Issue 3 2008
    Alessandro Pecci
    Abstract MYH9 -related disease (MYH9 -RD) is a rare autosomal-dominant disorder caused by mutations in MYH9, the gene for the heavy chain of nonmuscle myosin IIA (NMMHC-IIA). All patients present from birth with macrothrombocytopenia, but in infancy or adult life, some of them develop sensorineural deafness, presenile cataracts, and/or progressive nephritis leading to end-stage renal failure. No consistent correlations have been identified between the 27 different MYH9 mutations identified so far and the variable clinical evolution of the disease. We have evaluated 108 consecutive MYH9 -RD patients belonging to 50 unrelated pedigrees. The risk of noncongenital manifestations associated with different genotypes was estimated over time by event-free survival analysis. We demonstrated that all subjects with mutations in the motor domain of NMMHC-IIA present with severe thrombocytopenia and develop nephritis and deafness before the age of 40 years, while those with mutations in the tail domain have a much lower risk of noncongenital complications and significantly higher platelet counts. We also evaluated the clinical course of patients with mutations in the four most frequently affected residues of NMMHC-IIA (responsible for 70% of MYH9 -RD cases). We concluded that mutations at residue 1933 do not induce kidney damage or cataracts and cause deafness only in the elderly, those in position 702 result in severe thrombocytopenia and produce nephritis and deafness at a juvenile age, while alterations at residue 1424 or 1841 result in intermediate clinical pictures. These findings are relevant not only to patients' clinical management but also to the elucidation of the pathogenesis of the disease. Hum Mutat 29(3), 409,417, 2008. © 2007 Wiley-Liss, Inc. [source]


    Novel high-throughput SNP genotyping cosegregation analysis for genetic diagnosis of autosomal recessive retinitis pigmentosa and Leber congenital amaurosis,

    HUMAN MUTATION, Issue 5 2007
    Esther Pomares
    Abstract Retinitis pigmentosa (RP), the major cause of blindness in adults, is an extremely heterogeneous monogenic disorder. More than 32 causative genes have been identified, 18 of which are involved in autosomal recessive RP (arRP); however, more than 50% of the cases remain unassigned. There are no major causative genes identified for arRP nor any prevalent mutations, which make mutational screening of the already reported RP genes extremely time consuming and costly. Nonetheless, this step is unavoidable for genetic diagnosis of patients and potential carriers, and it is a prerequisite before approaching the identification of new RP genes and loci. We have designed an innovative high-throughput time- and cost-effective strategy for cosegregation analysis of 22 genes of arRP and Leber congenital amaurosis (LCA; an autosomal recessive retinal dystrophy that shares some of the RP genes and traits) by SNP genotyping. This novel indirect method has been validated in a panel of 54 consanguineous and nonconsanguineous arRP families. In a single and fast genotyping step: 1) we discarded all the 22 candidate genes in 13% of the pedigrees, highlighting the families of choice to search for novel arRP genes/loci; 2) we excluded an average of 18,19 genes per family, thus diminishing the number of genes to screen for pathogenic mutations; and 3) we identified CERKL as the causative RP gene in a family in which this candidate had been previously discarded by microsatellite cosegregation analysis. This type of approach can also be applied to other nonretinal diseases with high genetic heterogeneity, such as hereditary deafness or Parkinson disease. Hum Mutat 28(5), 511,516, 2007. © 2007 Wiley-Liss, Inc. [source]


    Pyrosequencing for detection of mutations in the connexin 26 (GJB2) and mitochondrial 12S RNA (MTRNR1) genes associated with hereditary hearing loss,

    HUMAN MUTATION, Issue 4 2002
    Alessandro Ferraris
    Abstract Hereditary hearing loss (HHL) is one of the most common congenital disorders and is highly heterogeneous. Mutations in the connexin 26 (CX26) gene (GJB2) account for about 20% of all cases of childhood deafness, and approach 50% in documented recessive cases of non-syndromic hearing loss. In addition, a single mitochondrial DNA mutation, mt1555A>G, in the 12S rRNA gene (MTRNR1), is associated with familial cases of progressive deafness. Effective screening of populations for HHL necessitates rapid assessment of several of these potential mutation sites. Pyrosequencing links a DNA synthesis protocol for determining sequence to an enzyme cascade that generates light whenever pyrophosphate is released during primer strand elongation. We assessed the ability of Pyrosequencing to detect common mutations causing HHL. Detection of the most common CX26 mutations in individuals of Caucasian (35delG), Ashkenazi (167delT), and Asian (235delC, V37I) descent was confirmed by Pyrosequencing. A total of 41 different mutations in the CX26 gene and the mitochondrial mt1555A>G mutation were confirmed. Genotyping of up to six different adjacent mutations was achieved, including simultaneous detection of 35delG and 167delT. Accurate and reproducible results were achieved taking advantage of assay flexibility and experimental conditions easily optimized for a high degree of standardization and cost-effectiveness. The standardized sample preparation steps, including target amplification by PCR and preparation of single-stranded template combined with automated sequence reaction and automated genotype scoring, positions this approach as a potentially high throughput platform for SNP/mutation genotyping in a clinical laboratory setting. Hum Mutat 20:312,320, 2002. © 2002 Wiley-Liss, Inc. [source]


    Absence of deafness-associated connexin-26 (GJB2) gene mutations in the Omani population ,,

    HUMAN MUTATION, Issue 6 2001
    Mehmet Simsek
    Abstract We have investigated the prevalence of mutations in the connexin 26 (GJB2) gene in Omani population using both PCR-RFLP and direct DNA sequencing methods. Two common GJB2 gene mutations (35delG and 167delT) were screened in 280 healthy controls and 95 deaf patients using two different PCR-RFLP methods. To investigate other GJB2 mutations, we have amplified and sequenced DNA from 51 unrelated deaf patients and 17 control subjects. None of the samples studied, either by RFLP or sequencing, revealed any deafness-associated mutations in the coding region of the GJB2 gene. These findings disagree with many reports on the GJB2 gene, describing various mutations as the cause of congenital recessive deafness. Although, an amino acid substitution (S86T) was identified by sequencing, we conclude that this change could not be associated with deafness since it was present in all the control and patient samples sequenced. © 2001 Wiley-Liss, Inc. [source]


    A rare connexin 26 mutation in a patient with a forme fruste of keratitis,ichthyosis,deafness (KID) syndrome

    INTERNATIONAL JOURNAL OF DERMATOLOGY, Issue 10 2009
    Ching Yin Neoh MBBS, MMed(Int Med)
    Background, Keratitis,ichthyosis,deafness (KID) syndrome is a rare ectodermal dysplasia characterized by generalized erythrokeratotic plaques, sensorineural hearing loss, and vascularizing keratitis. Cutaneous changes and hearing loss typically present in early childhood, whereas ocular symptoms present later. Mutations in the connexin (Cx) 26 gene, GJB2, are now established to underlie many of the affected cases, with the majority of patients harboring the p.D50N mutation. Methods, A rare patient demonstrating features of incomplete KID syndrome associated with an uncommon Cx26 gene mutation is described. Results, The patient presented late in adolescence with partial features of KID syndrome. There was limited cutaneous involvement and the rare association of cystic acne. Both hearing impairment and ophthalmic involvement were mild in severity. Genetic mutation analysis revealed a previously described, rare mutation in GJB2, resulting in a glycine to arginine change at codon 12 (p.G12R). Conclusions, This report describes a patient exhibiting characteristics suggestive of a late-onset, incomplete form of KID syndrome with the GJB2 mutation (p.G12R). The p.G12R mutation has only been described in one other patient with KID syndrome, whose clinical presentation was not characterized. [source]


    Reproductive Autonomy Rights and Genetic Disenhancement: Sidestepping the Argument from Backhanded Benefit

    JOURNAL OF APPLIED PHILOSOPHY, Issue 2 2004
    Martin Harvey
    abstract John Robertson has famously argued that the right to reproductive autonomy is exceedingly broad in scope. That is, as long as a particular reproductive preference such as having a deaf child is "determinative" of the decision to reproduce then such preferences fall under the protective rubric of reproductive autonomy rights. Importantly, the deafness in question does not constitute a harm to the child thereby wrought since unless the child could be born deaf he or she would otherwise never have existed, his or her prospective parents would simply have chosen to abort. As such, for this child, being born deaf counts as a benefit, albeit of the "backhanded" variety, since the only other practical alternative is nonexistence. In what follows, I want to investigate this argument in detail. The target of my investigation will be the possible future use of gene therapy technology to "disenhance" one's offspring. I intend to show that the apparently unlimited right to reproductive autonomy, that is, the right to choose both the quantity and qualities of future offspring, entailed by the argument from backhanded benefit can in fact be "sidestepped" through considering what sorts of reproductive practices we as a society ought to allow. [source]


    Juvenile Paget's Disease: The Second Reported, Oldest Patient Is Homozygous for the TNFRSF11B "Balkan" Mutation (966_969delTGACinsCTT), Which Elevates Circulating Immunoreactive Osteoprotegerin Levels,,§¶

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2007
    Michael P Whyte MD
    Abstract The oldest person (60 yr) with juvenile Paget's disease is homozygous for the TNFRSF11B mutation 966_969delTGACinsCTT. Elevated circulating levels of immunoreactive OPG and soluble RANKL accompany this genetic defect that truncates the OPG monomer, preventing formation of OPG homodimers. Introduction: Juvenile Paget's disease (JPD), a rare autosomal recessive disorder, features skeletal pain, fracture, and deformity from extremely rapid bone turnover. Deafness and sometimes retinopathy also occur. Most patients have diminished osteoprotegerin (OPG) inhibition of osteoclastogenesis caused by homozygous loss-of-function defects in TNFRSF11B, the gene that encodes OPG. Circulating immunoreactive OPG (iOPG) is undetectable with complete deletion of TNFRSF11B but normal with a 3-bp in-frame deletion. Materials and Methods: We summarize the clinical course of a 60-yr-old Greek man who is the second reported, oldest JPD patient, including his response to two decades of bisphosphonate therapy. Mutation analysis involved sequencing all exons and adjacent mRNA splice sites of TNFRSF11B. Over the past 4 yr, we used ELISAs to quantitate his serum iOPG and soluble RANKL (sRANKL) levels. Results: Our patient suffered progressive deafness and became legally blind, although elevated markers of bone turnover have been normal for 6 yr. He carries the same homozygous mutation in TNFRSF11B (966_969delTGACinsCTT) reported in a seemingly unrelated Greek boy and Croatian man who also have relatively mild JPD. This frame-shift deletes 79 carboxyterminal amino acids from the OPG monomer, including a cysteine residue necessary for homodimerization. Nevertheless, serum iOPG and sRANKL levels are persistently elevated. Conclusions: Homozygosity for the TNFRSF11B "Balkan" mutation (966_969delTGACinsCTT) causes JPD in the second reported, oldest patient. Elevated circulating iOPG and sRANKL levels complement evidence that this deletion/insertion omits a cysteine residue at the carboxyterminus needed for OPG homodimerization. [source]


    Treatment of Idiopathic Hyperphosphatasia With Intensive Bisphosphonate Therapy

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2004
    Tim Cundy MD
    Abstract In a family with IH, a rare high turnover bone disease, two older siblings were wheelchair-bound with severe skeletal deformity by age 15. Their youngest affected sibling was treated intensively with intravenous bisphosphonates for 3 years. The treatment was well tolerated and prevented the development of deformity and disability. Introduction: Idiopathic hyperphosphatasia (IH, also known as juvenile Paget's disease) is a rare genetic bone disease characterized by very high bone turnover and progressive bony deformity. Inhibitors of bone resorption have been used to suppress bone turnover in the short term, but there is no published data on long-term efficacy. Materials and Methods: An 11-year-old girl with IH, who had two severely affected older siblings, presented with progressive deformity and deafness and long bone fractures. Conventional pediatric doses of pamidronate had failed to prevent clinical deterioration or suppress bone turnover completely. Intensive bisphosphonate therapy (frequent 5-mg ibandronate infusions) was given to try and arrest progression of the skeletal disease. Growth and development, pure tone audiometry, biochemistry, radiology, densitometry (DXA), and bone histology were monitored. Results: A total of 45 mg ibandronate was given over 3 years until skeletal maturity was reached (20, 15, and 10 mg for years 1,3, respectively). Ibandronate treatment was well tolerated, and biochemical markers of bone turnover suppressed to within the age-appropriate normal range There was some progression of her thoracic kyphosis, but she had no further fractures and remained mobile and active at an age when her siblings had become wheelchair-bound. A significant recovery of hearing (p < 0.01) was documented, particularly at low frequencies. Radiographs showed improvement in spinal osteoporosis and cortical bone dimensions and arrest of progressive acetabular protrusion. Areal bone density increased substantially (lumbar spine z-score from ,2.2 to + 1.8). Tetracycline-labeled bone biopsy specimens were taken before and after 18 months of intensive treatment. The second biopsy showed suppression of bone turnover and a doubling of trabecular thickness, with no mineralization defect, and no osteopetrosis. Conclusions: Intensive bisphosphonate treatment prevented the development of deformity and disability and improved hearing in this child with IH. The dose of bisphosphonate, which is substantially greater than is usually used in pediatric bone disease, had no adverse effects, in particular on bone mineralization. [source]


    Idiopathic Hyperphosphatasia and TNFRSF11B Mutations: Relationships Between Phenotype and Genotype,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 12 2003
    Belinda Chong
    Abstract Homozygous mutations in TNFRSF11B, the gene encoding osteoprotegerin, were found in affected members from six of nine families with idiopathic hyperphosphatasia. The severity of the phenotype was related to the predicted effects of the mutations on osteoprotegerin function. Introduction: Idiopathic hyperphosphatasia (IH) is a rare high bone turnover congenital bone disease in which affected children are normal at birth but develop progressive long bone deformities, fractures, vertebral collapse, skull enlargement, and deafness. There is, however, considerable phenotypic variation from presentation in infancy with severe progressive deformity through to presentation in late childhood with minimal deformity. Two recent reports have linked idiopathic hyperphosphatasia with deletion of, or mutation in, the TNFRSF11B gene that encodes osteoprotegerin (OPG), an important paracrine modulator of RANKL-mediated bone resorption. Materials and Methods: We studied subjects with a clinical diagnosis of IH and unaffected family members from nine unrelated families. Clinical, biochemical, and radiographic data were collected, and genomic DNA examined for mutations in TNFRSF11B. The relationship between the mutations, their predicted effects on OPG function, and the phenotype were then examined. Results: Of the nine families studied, affected subjects from six were homozygous for novel mutations in TNFRSF11B. Their parents were heterozygous, consistent with autosomal recessive inheritance. Four of the six mutations occurred in the cysteine-rich ligand-binding domain and are predicted to disrupt binding of OPG to RANKL. Missense mutations in the cysteine residues, predicted to cause major disruption to the ligand-binding region, were associated with a severe phenotype (deformity developing before 18 months age and severe disability), as was a large deletion mutation. Non-cysteine missense mutations in the ligand-binding domain were associated with an intermediate phenotype (deformity recognized around the age of 5 years and an increased rate of long bone fracture). An insertion/deletion mutation at the C-terminal end of the protein was associated with the mildest phenotype. Conclusion: Mutations in TNFRSF11B account for the majority of, but not all, cases of IH, and there are distinct genotype-phenotype relationships. [source]