Dead Tissue (dead + tissue)

Distribution by Scientific Domains


Selected Abstracts


Sclerotinia sclerotiorum: When "to be or not to be" a pathogen?

FEMS MICROBIOLOGY LETTERS, Issue 2 2005
Dwayne D. Hegedus
Abstract Sclerotinia sclerotiorum is unusual among necrotrophic pathogens in its requirement for senescent tissues to establish an infection and to complete the life cycle. A model for the infection process has emerged whereby the pathogenic phase is bounded by saprophytic phases; the distinction being that the dead tissues in the latter are generated by the actions of the pathogen. Initial colonization of dead tissue provides nutrients for pathogen establishment and resources to infect healthy plant tissue. The early pathogenicity stage involves production of oxalic acid and the expression of cell wall degrading enzymes, such as specific isoforms of polygalacturonase (SSPG1) and protease (ASPS), at the expanding edge of the lesion. Such activities release small molecules (oligo-galacturonides and peptides) that serve to induce the expression of a second wave of degradative enzymes that collectively bring about the total dissolution of the plant tissue. Oxalic acid and other metabolites and enzymes suppress host defences during the pathogenic phase, while other components initiate host cell death responses leading to the formation of necrotic tissue. The pathogenic phase is followed by a second saprophytic phase, the transition to which is effected by declining cAMP levels as glucose becomes available and further hydrolytic enzyme synthesis is repressed. Low cAMP levels and an acidic environment generated by the secretion of oxalic acid promote sclerotial development and completion of the life cycle. This review brings together histological, biochemical and molecular information gathered over the past several decades to develop this tri-phasic model for infection. In several instances, studies with Botrytis species are drawn upon for supplemental and supportive evidence for this model. In this process, we attempt to outline how the interplay between glucose levels, cAMP and ambient pH serves to coordinate the transition between these phases and dictate the biochemical and developmental events that define them. [source]


Bone marrow stem cells regenerate infarcted myocardium

PEDIATRIC TRANSPLANTATION, Issue 2003
Donald Orlic
Abstract: Heart disease is the leading cause of death in the United States for both men and women. Nearly 50% of all cardiovascular deaths result from coronary artery disease. Occlusion of the left coronary artery leads to ischemia, infarction, necrosis of the affected myocardial tissue followed by scar formation and loss of function. Although myocytes in the surviving myocardium undergo hypertrophy and cell division occurs in the border area of the dead tissue, myocardial infarcts do not regenerate and eventually result in the death of the individual. Numerous attempts have been made to repair damaged myocardium in animal models and in humans. Bone marrow stem cells (BMSC) retain the ability throughout adult life to self-renew and differentiate into cells of all blood lineages. These adult BMSC have recently been shown to have the capacity to differentiate into multiple specific cell types in tissues other than bone marrow. Our research is focused on the capacity of BMSC to form new cardiac myocytes and coronary vessels following an induced myocardial infarct in adult mice. In this paper we will review the data we have previously published from studies on the regenerative capacity of BMSC in acute ischemic myocardial injury. In one experiment donor BMSC were injected directly into the healthy myocardium adjacent to the injured area of the left ventricle. In the second experiment, mice were treated with cytokines to mobilize their BMSC into the circulation on the theory that the stem cells would traffic to the myocardial infarct. In both experimental protocols, the BMSC gave rise to new cardiac myocytes and coronary blood vessels. This BMSC-derived myocardial regeneration resulted in improved cardiac function and survival. [source]


Larval therapy as a palliative treatment for severe arteriosclerotic gangrene on the feet

CLINICAL & EXPERIMENTAL DERMATOLOGY, Issue 8 2009
A. Nordström
Summary Larval therapy (LT) is known to be a gentle and effective method for removing necrotic tissue and bacteria and reducing the accompanying unpleasant odour. Ischaemia has been considered a relative contraindication for LT. We report a patient with ischaemia treated with LT. Inguinal revascularization was performed on a 69-year-old man with critical limb ischaemia, diabetes mellitus, heart failure and end-stage renal disease. Areas of dry black malodorous gangrene remained on the distal areas of the feet after surgery and the patient's poor health did not allow any additional surgery. The patient was referred to the dermatology department for LT. Although patients are usually given this treatment as inpatients, the patient requested treatment at home. After the first LT, there was a marked reduction in odour. The gangrene needed repeated applications of larvae to remove the dead tissue. After eight treatments, the result was more positive than we had expected, with total lack of odour and initiation of healing. Larvae cannot penetrate eschar, thus free-range larvae were used because they can move beneath the hard necrotic tissue and dissolve it. [source]


Sclerotinia sclerotiorum: When "to be or not to be" a pathogen?

FEMS MICROBIOLOGY LETTERS, Issue 2 2005
Dwayne D. Hegedus
Abstract Sclerotinia sclerotiorum is unusual among necrotrophic pathogens in its requirement for senescent tissues to establish an infection and to complete the life cycle. A model for the infection process has emerged whereby the pathogenic phase is bounded by saprophytic phases; the distinction being that the dead tissues in the latter are generated by the actions of the pathogen. Initial colonization of dead tissue provides nutrients for pathogen establishment and resources to infect healthy plant tissue. The early pathogenicity stage involves production of oxalic acid and the expression of cell wall degrading enzymes, such as specific isoforms of polygalacturonase (SSPG1) and protease (ASPS), at the expanding edge of the lesion. Such activities release small molecules (oligo-galacturonides and peptides) that serve to induce the expression of a second wave of degradative enzymes that collectively bring about the total dissolution of the plant tissue. Oxalic acid and other metabolites and enzymes suppress host defences during the pathogenic phase, while other components initiate host cell death responses leading to the formation of necrotic tissue. The pathogenic phase is followed by a second saprophytic phase, the transition to which is effected by declining cAMP levels as glucose becomes available and further hydrolytic enzyme synthesis is repressed. Low cAMP levels and an acidic environment generated by the secretion of oxalic acid promote sclerotial development and completion of the life cycle. This review brings together histological, biochemical and molecular information gathered over the past several decades to develop this tri-phasic model for infection. In several instances, studies with Botrytis species are drawn upon for supplemental and supportive evidence for this model. In this process, we attempt to outline how the interplay between glucose levels, cAMP and ambient pH serves to coordinate the transition between these phases and dictate the biochemical and developmental events that define them. [source]